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Preface

Dimensional analysis treats the general forms of equations that .describe
natural phenomena. Applications of dimensional analysis abound in nearly
all fields of engineering, particularly in fluid xhechanics and in heat-transfer
theory. - ) ' .

A systematic and thorough treatment of the principles of dimensmnz.tl
analysis is undertaken in this book. The part of the presentation that is
essential for practical applications presupposes little mathematical prepara-
tion, other than basic algebra-and an understanding of the concept of a
function. Buckingham’s theorem, which really embodies all dimensional
analysis, is introduced early, without the customary pi notation that is apt
to render its meaning obscure to a beginner.

The application of dimensional analysis to any particular phenomenon
is based on the assumption that certain variables, which are named, are the
independent variables of the problem, and that all variables, other than
these and the dependent variable, are redundant or irrelevant. This initial
step—the naming of the variables—often requires a philosophic insight
into natural phenomena.

The second step in the dimensional analysis of a problem is the formation
of a complete set of dimensionless products of the variables. Most presenta-
tions of the subject demonstrate that the exponents of a dimensionless
product are a solution of a certain set of homogeneous linear algebraic
equations. Not just one solution of these equations is required, however,
but rather, a fundamental system of solutions. This concept, and its ap-
plication to dimensional analysis, are discussed in Chapter 3. Also, a
routine numerical procedure for calculating a fundamental system of solu-
tions of any set of homogeneous linear algebraic equations is presented.
Often, a complete set of dimensionless products can be perceived without
computation. However, even those who are experienced in dimensional
analysis will occasionally find it expeditious to resort to a systematic method.

Chapter 4 presents a rigorous development of the theory of dimensional
analysis. This chapter discloses the logic and the scope of the subject,
and it supplies proofs of the theorems. This analysis is unavoidably too
abstract and too mathematical to be readily assimilated by undergraduate
engineering students. Therefore, some instructors will prefer to omit
Chapter 4. This omission does not impede the understanding of the sub-
sequent chapters.

v



v PREFACE

The extensne use of small-scale models for tnvestigating problems of
engineering raises many important questions that are resolved by di
mensional analysis A fauly complete account of the theorses of simlanty
and model testing 15 presented 1o Chapter 5 A discussion of the many
practical techniques in particular types of model tests 1s beyond the scope
of this book

In the analysis of problems of stress and strain, dimenstonal analysis
has pethaps received too little attention  The results of computations or
expertments can here be greatly ded by means of
presentations  Chapter 6 contains examples to lllustrate this point

Questions of flud motion have probably provided a greater incentive to
the development of dxmenslonal analysis than any other group of problems
Some of di Y analysis m ths field are pre-
sented in Chapter 7

Another field in which dimensianal analysis has been wnvaluable 15 the
theory of heat transfer Apphcations of dimensional analysis to some
thermal problems are 1llustrated in Chapter 8

In recent years dimensional analysis has had important apphcations
m electromagnetic theory The :deas underlymng the dimensions of elec
trical and magnetic entities are discussed in Chapter 9, and some applica
tions are Mlustrated

Chapter 10 1llustrates the method of derving model laws from the
differenttal equations that govern particular phenomena  This method 1s
frequently used 1n scientsfic Literature

In order that students may understand the examples 1 the book and
n order that they shall have a sufficiently mature outlook on science to
understand properly the general subject matter 1t is advisable that they
be famibar with principles of physics and engineering that are presented
1n the first three years of an engineering curnculum

The author s mnterest i dimensional analysis stems from his own mves
tigations of the mathematical nature of the subject and from experience
that he gamed by teaching the subject for several yeats 1n a graduate
course 1n fluid mechanics at the Umiversity of Ilinois  The book contains
some novet features, particularly the method of computing dimensionless
products that 15 presented 1 Chapter 3 and the algebraic theory that 15
presented 1n Chapter 4

Much credit for the work 1s owed to Professor [red B Seely, who has
taken a keen interest 1n the teachng of dimensional analysis, and who
secommended to the author that hus class notes be expanded into 2 book
In the writing of the chapter on electrical apphcations Mr Knute J Takle,
of the Naval Electronics Laboratory in San Diego California, rendered
valuable by b the 1l examples, and by advis
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ing the author on the systems of dimensions. The author is also indebted
to Dr. Cevdet A. Erzen, Professor Will J. Worley, Mr. William B. Sanders,
Jr., and Professor William Owen for suggestions and contributions that
have added to the clarity and the interest of the work.

Unfortunately, the author did not learn, until after the page proofs were
printed, that the inversion of the Stanton diagram (Figure 12) had been
proposed previously. This type of chart was originally devised by S. P.
Johnson, Preprinted Papers and Program, ASME Summer Meeting, June
1934, p. 98. The presentation of open-channel data in this form has been
discussed by R. W. Powell, Resistance to Flow in Rough Channels, Trans.
Am. Geoplrys, Union, Vol. 31, no. 4, Aug., 1950.

H. L. LancHAAR
January 1951
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CHAPTER 1

The Nature and the Use

of Dimensions

The success of any physical investigation depends on the judicious
selection of what is to be observed as of primary importance, com-
bined with a voluntary abstraction of the mind from those features
which, however attractive they may appear, we are not yet suffi-
ciently advanced in science to investigate with profit.

J. CLERK MAXWELL

1. ScorE oF DIMENSIONAL ANALYSIS

Dimensional analysis is a method by which we deduce information about
a phenomenon from the single premise that the phenomenon can be de-
scribed by a dimensionally correct equation among certain variables. The
generality of the method is both its strength and its weakness. With little
effort, a partial solution to nearly any problem is obtained. On the other
hand, a complete solution is not obtained, nor is the inner mechanism of a
phenomenon revealed, by dimensional reasoning alone.

The result of 2 dimensional analysis of a problem is a reduction of the
number of variables in the problem. Students sometimes inquire, “What
advantage is gained by this?” The answer to this question is apparent if
one considers the labor that is required for the experimental determination
of a function. A function of one variable may be plotted as a single curve.
A function of two variables is represented by a family of curves (called a
“chart”), one curve for each value of the second variable. A function of
three variables is represented by a set of charts, one chart for each value of
the third variable. A function of four variables is represented by a set
of sets.of charts, and so on. 1If, for example, five experimental points are
required to plot a curve, twenty-five points are required to plot a chart of
five curves, one hundred and twenty-five points are required to plot a set
of five charts, etc. This situation quickly gets out of hand, particularly if
each experimental point entails much expense, as is not unusual. Evi-
dently, a reduction of the number of variables in a problem greatly amplifies

1



2  THE NATURL AND THL USL OI DIMENSIONS

the information that 15 obtaned from a fe v experiments  Consequently
dimensional analysis has become an important mathematical tool of
expermenters

2 U~rrs oF FORCE AND Mass

If Newtons law I = ma 15 appled to a frecly faling body the force
I 1s the weight 11 and the acceleration @ 1s the acceleratoon of geavity g
Consequently ¥ — mgorm I1/g Bysetting m = 11n this equation
we percerve the following general rule

Lor consister cy wath the low I' = ma the werglt of ¢ wnl mass must
be exacily g s uts of force

The conventional systems of measurement conform to this rule  Five
common systems of measurement ate discussed m the following

(a) CGS System The letters CGS denote respectively — centimeter

gram and second  The gram is generally regarded as a unit of mass

This 18 the thousandth part of a kilogram the latter mass being legally
def ned as the mass of a platnum cyl nder that 15 deposited at Vhe Imter
nationat Bureaw of Weights and Measures at Sevres Trance  The kilo-
gram 1s very nearly the mass of a lter of water at 4°C By virtue of the
law of the lever masses are accurately measured by a balance-type scale

For cons stency with Newton s law the umit of force 1n the CGS system
15 defined to be that force which will give a gram mass an acceleration of
tomfsec® Thisumtof forceiscalleda dyne  Swce the standard value
of £15 980 66> cmy/sec? the equation 8 g shows that the weight of 2
gram mass on the earth 1s approvimately 981 dynes

In the CGS system the unit of work 152 dyne centimeter  This umit
15 called an  erg

(b} MAS Mass System  The letters MKS denote respectively meter

kilogram and second  In the MAS mass system the kilogram is

regarded as a unit of mass  For consistency with the law F = ma the
umt of force 15 that force which will give a kilogram mass an acceleration of
1 m/sec?  This umt of force 1s called a newton  Evidently a newton
15 one hundred thousand dynes  This 1s approuimately © 225 b

The umt of work 11 the MKS mass systemisa newton meter  This
umt 3 ealled 2 joule  The joule 15 ten mthon ergs The watt 152
upit of power that Is defined to be one Joule per second

The MKS mass system Is used in electrical engineering It is regret
table that this imple system 15 not used by all engineers  The widespread
confus on about the umts of force and mass would then be dispelled

{c) MKS Force System  Tn the MKS force system the kilogram 1 ve
garded as a umit of force rather than a umt of mass The kilogram force
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is defined to be the weight of a kilogram mass under standard gravitational
attraction. Consequently, a kilogram force is 980,665 dynes.

For consistency with the equation, F = ma, the unit of mass in the MKS
force system is a “kilogram second squared per meter” (kg sec?/m). This
unit of mass has not received a special name. The equation, W = mg,
shows that one kilogram second squared per meter is a mass that weighs
approximately 9.81 kg force on the earth.

The MKS force system is extensively used in engineering practice in
continental Europe.

(d) British Mass System. In the British mass system, the pound is
regarded as a unit of mass. The pound mass is legally defined to be
0.4536 kg mass. For consistency with the equation, F = ma, the unit of
force is defined to be that force which will give a pound mass an acceleration
of one foot per second squared. This unit of force is called a “poundal.”
Since the standard acceleration of gravity is 32.174 ft/sec? the equation,
1V = mg, shows that the weight of a pound mass on the earth is approxi-
mately 32.2 poundals. Accordingly, one poundal is a force that is nearly
equal to half an ounce.

The British mass system is frequently used in British technical writings.

(e} American Engineering System. ZEngineers in the United States usu-
ally regard the pound as a unit of force; namely, 0.4536 kg force. For
consistency with the equation, F = ma, the unit of mass is then a “pound
second squared per foot” (Ib sec?/ft). This unit of mass is called a “slug.”
The equation, IV = mg, shows that the slug is a mass that weighs approxi-
mately 32.2 Ib on the earth.

The American engineering system does not logically exclude the concept
of a “pound of matter.” A pound of matter may be defined to be the quan-
tity of matter that weighs one pound on a spring scale. This is not an in-
variable quantity of matter, since it depends on the local acceleration of
gravity. However, discrepancies between spring-type scales and balance-
type scales, caused by variations of gravity, are ordinarily negligible.

For example, in hydraulics, “head” is interpreted to be energy: e.g. foot
pounds of energy per pound of fluid. This interpretation is not reconcilable
with the assertion that the unit of head is the foot, unless the pound is con-
§istently regarded as a unit of force. Accordingly, in hydraulics, the pound
1s understood to be a unit of force, even though the expression “pound of
fluid” is frequently used.

It n.lust be admitted, however, that the use of a unit of force to express
quantities of matter is misleading. Not only is the terminology deceptive,
but. the forms of equations also are affected. In commenting on some
cnglr_leering formulas, Lord Rayleigh remarked, “When the question under
consideration depends essentially upon gravity, the symbol g makes no
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appearance, but, when gravity does not enter into the question at all, g
obtrudes stself conspicuously An example to ustrate Rayleigh's pomnt
15 the manner of wnting Bernoulli’s equation mn terms of heads For a
honzontal conduit, the equation ts

2
Z-}—Z-=wnsumt
w2

Here, gravity has nothing to do with the flow, but the specific weight and
the acceleration of gravity both appear in the equation  The real nature
of the phenomenon is displayed better if the equation 1s wnitten,

P4 V5 pV? = constant  where w = pg

Note that p does not depend on gravity  The latter form of the equation
des not preclude the energy concept of hydraulics  The terms in the equa-
tion may be interpreted to be energy per unit volume of flud It 15 also
permussible to divide the equation by p, 10 whuch case the terms represent
energy per umt tmass of flud

Thermodynamicists and chemical engimeers often interpret a pound of
flurd to be & “pound mass,” and they simultaneously designate the unst of
pressure to be a * pound force per square foot”  This dual mterpretation
of the pound 1s, to some extent, ambiguous, but 1t causes no discrepancies
i practice, if Newton’s law, I” = g, 15 not employed If Newton’s law
15 employed, 1t must be expressed m the modified form, F = &ma, 1 which
the factor % compensates for the fact that the unts are not compatible with
the equation F =me When thermal and dynramica) effects are both
considesed (asin the theory of compressible flow of gases), at isadvantageous
to employ distinct unus of force and mass that conform to the equation,
F=1ma

3 PHYSICAL DIMENSIONS

Scientific reasoning 1s based on concepts of varous abstract entities, such
as force, mass, length, time, 2cceleration, veloaty, temperature, specific
heat, and electric charge  To each of these entities there 1s assigoed a unit
of measurement  The entities mass, length, time, temperature, and electnic
charge, ate, 1n & gense, independent of each o\hcr for thm units of measure
ment are bed by Fi the spec1
fied units of these entities determine the units of all other entities There
1s, however, nothing fundamental 1n the set of entities, mass, length, time,
temperature, and electric charge A great many possibilities exist for
choosing five mutually independent entities  Frequently, the umt of force
15 considered to be prescnbed, rather than the umt of mass  When the
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units of force, length, and time are given, the unit of mass is uniquely deter-
mined by Newton’s law, F = ma. In this case, the system of Ifneasux.'ement
is called a “force system,” in contradistinction to the system in which the
unit of mass is prescribed. o

Even the fact that there are five mutually independent entl.tl.es is a conse-
quence of arbitrary definitions of the ways in which quantities are meas-
ured. For example, the kinetic theory of gases teaches that the tempera-
ture of a stationary gas is proportional to the mean kinetic energy of a
single molecule of the gas. If the temperature of a stationary gas
were defined to be exactly equal to the mean kinetic energy of a
molecule, the unit of temperature would evidently be determined by the
units of mass, length, and time.

J. Clerk Maxwell, the Scottish physicist and philosopher, emplqyed
symbols of the type [F], {M], (L}, [T1, [8] to denote force, mass, length, time,
and temperature, respectively. He formed products of powers of these
symbols, which he called “dimensions.” It is difficult to perceive what
significance Maxwell attributed to dimensions, although he apparently be-
lieved that they would be useful for displaying analogies among various
branches of physics, such as mechanics, electricity, and heat. Many con-
troversies have been waged over the significance of dimensions. The
polemics frequently display attitudes akin to Leibniz’s feeling for the imag-
inary number, “A fine and wonderful recourse of the divine spirit, almost
an amphibian between being and not being.” But the general conclusion
that emerges from the discussions is that the concept of dimensions is of
little importance to philosophy. On the other hand, dimensions serve a
mathematical purpose. They are a code for lelling us how the numerical
value of a quantity changes when the basic units of measurement are subjected
lo prescribed changes. ‘This is the only characteristic of dimensions to which
we need ascribe significance in the development of dimensional analysis.
The use of dimensions for transforming units of measurement is illustrated
in Article 4.

The dimensions of entities follow from definitions or from physical laws.
For example, a velocity « is a derivative of distance with respect to time;
i.e. 2 = dx/dl. Since dxis an increment of length and d! is an increment of
time, the dimension of velocity is [L/T} or [LT-]. Similarly, since accelera-
tion is represented by a derivative du/d!, in which dx is an increment of
velocity, the dimension of acceleration is [L/7%] or [LT-?]. These dimen-
sions show that velocities may be expressed in feet per second, centimeters
per second, miles per hour, etc., and that accelerations may be expressed

1J. Clerk Maxwell, On the Mathematical Classification of Physical Quantities,

London Math. Soc., Vol. IT1, no. 34, p. 224, Mar. 1871,
of Heal, Longmans, Green, London, 1894,

Proc.
See also J. Clerk Maxwell, Theory
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In feet per second squared, centimeters per second squared, miles per hour
squared, etc

Since force and acceleration have the respecttve dimensions {F] and
[LT-%, Newton’s law, F = ma, shows that mass has the dimension
(FT'L Y| Conversely, m the mass system, force has the dimension
(MLT-*] To convert drmensions from the force system to the mass sys-
tem, the dimensional expression [WLT~? 1s accordingly substituted for [F}
The dimensional relationships among {F] [], [L], and [T] sndicate the
following rel: hips among the ding untts:

1lb = 1slug ft/sec, 1dyne = 1 g cm/sec?
1 shg = 1 b sec?/ft, ig = 1 dyne sec?/em

Here, the pound 1s considered to be a unit of force, and the gram 15 con~
sidered to be a unit of mass

The dimension of mass density s evidently [\L~3) or [FL™T7] Ac
cordingly, in the Amencan engmeening system, mass density 1s expressed
n the umt (stug/ft’) or (b sec?; ft4)

Pressure and stress, being force per unit area have the dimension {FL-7]
or (ML-'T-%| The dynamic ceefficient of viscosity 4 15 defined by the
equation 7 = u du/dy i which r 15 a stress, du 13 an increment of velocity,
and dy 1s an increment of length  Consequently, the dimension of the
dynamic coethcient of viscosity 1s [FL *T] or [ML='T Y| The kinematic
coefficient of viscosity (v = p/p) then has the dimension {L37~1]

The unut of temperature may be assigned independently of the umts of
the entities of mechamcs  Consequently, the symbol [8] denoting tempera
ture, 15 Tegarded as one of the fundamental dimensions

The dimension of an arbitrary vanable 2 15 denoted by [z]  If 21s dumen
sionless, this fact may be denoted by [z] = {1] The dimension of an 1n
tegrat Sy dx s [y dx] or [y] [dx]

There 15 no essent:al reason for having two systems of dimensions, the
force system and the mass system  As 1n many other instances, practices
1 various fields of pure and applied science have not been corrclated well
enough to insure the development of a universal convention  Some writers
have suggested that the difficulty may be arcumvented by letting both
[F} and {1f] be fundamenta! dimensions This can be accomplhished by
wnting Newton's law 1n the form F = kma  The factor & (which has the
dimension [FT%/} L)) would then appear in the formulas of dynamics It
15 2 moot questien whether the mconvemence of an intrusion of ¥'s n all
fields of dynamics would outweigh advantages that would result by dis
soctating the dimensions of force and mass
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4. TRANSFORMATION OF UNITS OF MEASUREMENT

Dimensional expressions enable us to convert units readily from one sys-
tem of measurement to another. For example, to express an acceleration of
20 cm/sec? in the unit “miles per hour squared,” set 1 cm = 6.2137 X 10-®
mi and 1 sec = 2.777 X 10~* hr. Then,

cm 6.2137 X 10-% mi :l l:rm:l
| = = 1610 | —
20 [sec“’] 20 [(2.777 X 10~4)2 hr? hr?
The method illustrated in this example is perfectly general. .
Frequently, empirical formulas contain coefficients that are valid only
for a particular set of units. The above method may be used to modify

the coefficients, so that different units may be used. The procedure is
illustrated by the following example.

Exarpie 1. FRrICTION ON THE WALL OF A FLUME

The average shearing stress 7 (lb/ft?) that a flowing liquid exerts on the
wall of a concrete flume is assumed to be given by the empirical formula,

r = 0.0021 p V2R™%

in which p is the mass density of the liquid (slug/it?®), V is the average veloc-
ity of the liquid (ft/sec), and R is the ratio of the cross-sectional area to the
wetted perimeter (hydraulic radius) in feet. It is desired to modify this
formula so that it yields equivalent results when = is expressed in kg/m?
p is expressed in kg sec®/m*, V is expressed in m/sec, and R is expressed in
meters.

The formula is of the form, r = KpV2R™. This equation shows that
the dimension of K is [L*¥). The given value of X is accordingly 0.0021 ft**,
Since 1 ft = 0.3048 m, it follows

K = 0.0021 [it*%] = 0.0021 [0.3048" m*] = 0.00141 [m*]
Consequently, when the formula is adapted to the new units, it becomes
7 = 0.00141 pV2R~

Note that the conversion of the force unit from the pound to the kilogram
is immaterial, since K does not contain the dimension of force.

The result may be checked by assigning numerical values to p, V,and R;
say p = 2 slug/it*, V = 10 ft/sec, R = 8 ft. Then the original formula
vields = = 0.21 lb/ft2. In the metric system, the specified values are
p=105.1 kg sec’/m’, V = 3.05m/sec, R = 2.44 m. Hence, the new

formula yields 7 = 1.023 kg/m®.  Since this is equivalent to 0.21 1b/ft?
the two formulas agree.
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A somewhat different apphication of the method of conversion of units
35 lustrated by the following example

EXAMPLE 2 ASTRONOMICAL SYSTEM OF MEASURFMENT

Newton’s law of gravitation asserts that any twa masses m and m” attract
each other with a force F* that 1s inversely proportional to the square of the
distance r between the masses  I'his Jaw 15 evpressed by the equation,
F = kmpi'/r* In the CGS system of measurement, the value of the gravi
tational constant 15

.
E=67% m~-[—‘ﬂ;]
g sec’

By definstion, the system of 1ssuch that £ =1
Letting the units of length and time be the mile and the second, let us
express the astronomical units of force and mass 1 terms of familiar umts

Denote the astronomical unit of mass by asm' Setlg= X asm,and
1em = 62137 X 10# m1  Then,

s 2 ~6)3 gt
Ee 67X 10 om =67X10"[(6 137 X 107%)% my _
g sect (X asm) sec?

‘[ m? ]
asm sec
The last equation expresses the fact that & = 1 in the astronomical system

Itfollws,
.
67X62137’X£§— =1

or X =1607X 10
Hence, 1g=1607X 10""asm or 1asm= 6223 X 10%g
Therefore, 1asm = 4261 X 10" slug

Fhus, the asti L unst of mass 1s exp d 1n terns of slugs  The

astronomical unst of force 1s now determined by Newton’s equation,

F=kmm'/r* For,letm=m'=1asm=6223X10%¢g r=1m=

160,940 cm, and £ = 67 X 10-* cm?/p sec® Then, sice £ = 1 1 the

astronomical system, the value of F 1s one astronomical umt of force

(lasf) Inthe CGS syster, this forcess

kmm’ - 67 X 1073(6 223 X 10M)2
” (160,910)*

or F=1ast=225X1021

F= =LKW Ay
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The results are summarized below:
1 astronomical unit of mass = 1 asm = 6.223 X 10%* g = 4.264 X 10® slug
{ astronomical unit of force = 1 asf = 1.003 X 10 dyne = 2.25 X 10** Ib

These relationships are valid only if the units of length and time are the
mile and the second.

ExaMPLE 3. DIMENSIONS OF MAsS AND FORCE IN THE
ASTRONOMICAL SYSTEM

Max Planck,? the eminent physicist, has cited the astronomical system of
measurement as an illustration of the conventionalism in dimensions.
Since £ = 1 in the astronomical system (see Example 2), Newton’s law of
gravitation is expressed by the equation, F = mm’/r%. In conjunction
with Newton’s law of inertia, F = ma, this yields

o

[ma) = [1—”;—;’] or [MLTY = [M*L7?

Hence, [M] = [L3T-7

The equation, F = ma, now yields [F] = [L*T—%. Accordingly, the units
of mass and force in the astronomical system are, respectively, the “mile
cubed per second squared” (mi®/sec?) and the “mile fourth per second
fourth” (mi‘/sect). These relationships imply that the specified units of
length and time determine the units of mass and force in the astronomical
system. This is indeed true; in fact, the results of Example 2 may be ex-

d
pressed, 1asm = 1 mi%/sect = 4.264 X 10' slug

and 1asf = 1 mit/sect = 2.25 X 1022 1b

To those who attribute an intrinsic meaning to dimensions, the relation-
ships [M] = [L3T-?] and {F] = [L*T-*] may seem paradoxical. However,
these dimensions determine unequivocally how values of quantities in the
astronomical system are changed, when the units of length and time are
changed. 1If, for example, the kilometer is adopted as the unit of length
rather than the mile, the astronomical units of mass and force are changedi
The conversion is calculated as follows:

mi® 1.60943 km? km?3
Y P ot
[SGC;] [ sec? ] =1 [sec'-’:l
mi? 1.60944 km* km+
! [SEC‘] =1 [ sect ] =6n [ 4]
sec

* Max Planck, General Mechanics (Vol. I of Introduction to Th 7 i i
28, Nacmilin Lonon. 1058 on to Theoretical Pliysics), Article
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Accordingly, when the units of length and time are the kilometer and the
second, the astrononucat umts of mass and force are

1 km?/sec? = % X 10% slug = 1022 X 10'* slug

1 km#/sect = :% X 10" ]b = 336 X 10* b

In view of this example, and sumlar illustrations in other branches of
physics Max Planck has remarked  To inquire into the ‘real’ dimension
of a quantity has no more meanming than to inquire into the ‘real’ name of
an object Many unfruitful controversies 1n physical hiterature, particu
larly those the el system of would
have been avoided, had this circumstance always been propetly appre-
aated ”

It may be noted that Newton’s law of gravitation 1s of the same form as
Coulomb s law of force between electric charges The features that dis-
tinguish the astronomical system from the mass-length ime system 1
dynamics consequently distinguish the Gaussian system from the Giorgt
system n electromagnetic theory This matter 13 discussed i Article 60

Tarte 1

CONVERSION I'ACTORS
Units of Length
Im=23937m =32811¢
1t = 30480 cm = 0.30480 m
1m - 254em
1o = 5280 ft = 16094 m = 160940 cm
Tem = 62137 X 107 mu

Unats of Force and Mass

1kg = 2204616 11b = £44 820 dyne — 4 4152 newton
tlb = 04536 kg Lslug = 14594 g = 14504 kg
1 metric ton = 1000 kg 1 kg (force) = 980 663 dyne
kg = 006852 slug 1pewton = 02248 th = 100 000 dyne
Units of Temperature
1°C - 18°F
Units of Viscossty

1pose =t g/cmsec = 1 dyne sec/em? = 0002088 slug/ft sec = 0 002088 Ib sec/ft?
1stoke = 1 cm?/sec = 0001076 ft/sec
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V' TABLE 2
DIMENSIONS OF ENTITIES
Mass System Force System
Length (L] 82
Time (1] 7]
Temperature [e] . [}
Torce [MLT (F] s
Mass (M] [FL_:T ]
Specific Weight (ML - |F L_) -
Mass Density [ML] [FL™T7
Angle 91 [ .
Pressure and Stress [MLT [F L_,J
Velocity LT [LT_zl
Acceleration (LT [Lz ]
Angular Velocity (T [T_ﬂl
Angular Acceleration 777 (-
Energy, Work (MLT™Y [FL]
Momentum (MLT-Y [FT]
Power [ML2T3) [FLTY
Moment of a Force [MLT™] [FL]
Dynamic Coefficient of Viscosity — [MLT) N {(FLT]
Kinematic Coefficient of Viscosity {2271 L T4
Moment of Inertia of an Area 1LY 1Y
Moment of Inertia of a Mass [MLY [FLT?)
Surface Tension [MT3) [FL-}
Modulus of Elasticity [MLT-) [FL-%
Strain 1] 11
Poisson’s Ratio 1 1
PROBLEMS

1. Verify the conversion factors for the units of viscosity that are given in Table 1.
¥2, A mass is 1075 ton hr?/mi. What is the value of the mass expressed in slugs?

In grams? What is the weight of the mass in pounds, under standard gravitational
attraction? (1 ton = 2000 Ib.)

3. Using the result of Example 2, calculate the mass of the earth in astronomical units.
In slugs. In kg sect/m. Hence, compute the average specific gravity of the earth.
(Hint. One slug weighs 32.17 Ib at a distance of 3960 mi from the center of the earth.)

4. The dimension of a quantity is [F**L-37-20~*%]. By what factor is the numerical
value of the quantity changed, if the unit of force is changed from megadynes to pounds
(1 megadyne = 10° dyne), the unit of length is changed from meters to feet, the unit of
time is changed from seconds to minutes, and the unit of temperature is changed from
degrees centigrade to degrees Fahrenheit?

5. The dimension of a quantity is [A3L™27207Y). By what factor is the numerical
value of the quantity changed if the units of measurement are subjected to the same
changes as in Problem 4?

6. R. Iribarren Cav. has developed the following formula for the required weight of
cach armor rock in a rubble breakwater:

0.019 sk?

W=
(s — 1) (cos @ — sin a)®
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1n which I¥ 18 the seight of a rock in metric tons, 18 the height of the waves in meters,
318 4he spenfic gravity of the rock relative (o sea water, aod a is the angle of the face of
the breakwater with respect to the horizanta! Modify this formulz, so that it yields
equivalent results when I 15 expressed 1n pounds and & 13 expressed in feet  Assuming
that W 18 proportiona! to the specific weight w of the water, generalize the formula so that
118 vahd for any consistent units of measurement  Calculate IV {Ib) for the case s = 2.5,
kw20 ft, w = 64 1b /it and tana = 0 25
v 7 K D Wood has given (in 1935) the empincal formula,

C = (150 + 004¥1)4
1n which € 1 the cost of & wind tunnel in dollars ¥ 15 speed of the air inm fhr, and A1s
the area of the throat in square feet  Modify this formulz so that 1t yields equivalent
results when ¥ 18 expressed 1n ft/sec and 4 1s expressed in square inches  Check the
result by a numenical example
\ 8 Themean rate of flow of axr through  nozzle 1s apprommated by Fliegner’s formutas

G ),

M 0764

for p>ip

o

M = 03840 for pa<ip

1n which 3 15 the mass rate of flow in kg/sec, 4 15 the area of the onifice 1 square centy
meters, 6, 13 the absolute temperature in the vessel 1n degrees centigrade, and p, and py
are the internal and external pressures in kg/em?  Modify these formulas so that they
yield equivalent results when M 1s expressed in slug jsec, A 18 expressed in square inches,
& is exptessed n degrees absolute Fahrenheit and p; and p are expressed in Ib/in?
(Hint Note that the kilogram 15 used simultaneously as a unit of force 3nd @ unit of mass )

9 According to modem physics, matter 13 form of energy  One gram massis9 X 109
ergs of energy  Consder 2 system of measutement §, . which the umt of work 1s the
energy of & gram mass  Let mass and ume be fundamental dimensions, and let their
umts be the gram and the second  If Newton’s equation # = ma 14 retained, what are
the dinensions of length, veloaty, and force i system S? Prove that the ynt of
length 1 system S 15 the distance traveled by hght in one second (Velooity of bght =
3 X 10° cm/sec)  Express the un:t of force of system $ 1 dynes  In pounds,



CHAPTER 2

vPrinciples and Illustrations

of Dimensional Analysis

It happens not infrequently that results in the form of “laws” are put
forward as novelties on the basis of elaborate experiments, which
might have been predicted a priori after a few minutes consideration.

Lorp RAYLEIGH

v 5. DiMENSIONAL HOMOGENEITY

An equation will be said to be dimensionally homogeneous if the form of
the equation does not depend on the fundamental units of measurement.
For example, the equation for the period of oscillation of a simple pendulum
(T = 2xV'L/g) is valid whether length is measured in feet, meters, or
miles, and whether time is measured in minutes, days, or seconds. There-
fore, by definition, the equation is dimensionally homogeneous, If the
value g = 32.2 ft/sec?® is substituted in the equation, there results 7' =
1.11VL. This equation is correct for pendulums on the earth, but it is no
longer dimensionally homogeneous, since the factor 1.11 applies only if
length is measured in feet and time js measured in seconds. It might be
argued that the factor 1.11 itself has the dimension [L—*T]. However,
dimensions must not be assigned to numbers, for then any equation could
be regarded as dimensionally homogeneous.

It can be deduced from the above definition of dimensional homogeneity
that an equation of the formx=a¢4+ b4 ¢+ - -is dimensionally homo-
gencous if, and only if, the variables «, a, b, ¢, - - - all have the same dimen-
sion. This theorem is proved in Chapter 4. It is a useful theorem for
checking derivations. 1If a derived equation contains a sum or a difference
of two terms that have different dimensions, a mistake has been made.
This principle may be applied to differential equations and integral equa-
tions, as well as to algebraic equations. It should not be assumed, how-
ever, that an empirical equation is necessarily dimensionally homogeneous,

13
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6 GENERAL RFMARKS ON DIMINSIONAL ANALASIS

As compared to the general types of functions that are investigated
h 1 analysis, Iy | functions are a specsal
class  The theory of dimensional analysis 13 the mathematical theaty of
this class of functions  This theory 15 purely algebraic It s developed in
an abstract form in Chapter 4
The appheation of dimensional analysis to a practical problem 15 based
on the hypothesis that the solution of the problem 1s expressible by means
of a dimensionally homogeneous equation m terms of spectfied varsables
This hypothesis 15 yustified by the fact that the fundamental equations of
physics are di lly b and that rel; hips that are
deducible from these are d i}
ous  However, we may not logically assume a prions that an unknown equa-
tion 1s dimensionally homogeneous, unless we know that the equation
contams all the vanables that would appear 1 an analytical derivation of
the equation  For example, 1n the problem of drag on a spherncal body m
an ar stream, 1 nught be argued that the density and the viscosity may be
since they are for standard air  The equation for
the drag force F wauld ther be of the farm £ = f(V, D), in which V 1s the
velocity of the stream and D 15 the diameter of the body  However, 1t 1s
obviously impossible to construct a dimenonally homogeneous equation
of this form, since the varables ¥ and D do not contam the dimensions of
force or mass
The first step 1n the dimensional analysis of a problem ts to decide what
variables enter the problem I vanables are introduced that really do nat
affect the phenomenon too many terms may appear In the final equation
1t vanables are omitted that logically may snfluence the phenomenon, the
calculations may reach an mpasse but, more after, they lead to an wmcam-
plete or erroneous result Even though some variables are practically
constants {e g the acceleration of gravity) they may be essential because
they combine with other active variables to form dimensionless products
Frequently the question anises, How do we hnow that a certain variable
affects a phenomenon?” To answer this question, ohe must understand
enough about the problem to explain z/y and kow the variable influences
the phenomenon  Before one undertakes the dimensional analysis of a
problem, he should try to form a theory of the mechamsm of the phe-
nomenon Even a crude theory usually discloses the actions of the more
important variables If the differential equations that govern the phe-
nomenon are available, they show diectly which variables are sigmificant
"There are some fields in which dimensional analysis bas had httle applica
tion, because the existing hnowledge in these fields 15 mdequate to sndicate
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the significant variables. For example, the endurance limits of membfars
that are subjected to alternating stresses have not been correlated with
other measurable properties of materials. Consequently, dimensional
analysis cannot yet be brought to bear on questions of fatigue of materials.

The nature of dimensiona)l analysis will be made clearer by an example.
Consider a smooth spherical body of diameter D that is immersed in a
stream of incompressible fluid. Let the velocity of the stream at some dis-
tance ahead of the body be V. Then the drag force F on the body is repre-
sented by an equation of the form, F = f(V, D, p, u), in which p is the mass
density of the fluid, u is the dynamic coefficient of viscosity of the fluid,
and f represents an unspecified function. This equation merely means that
F depends on the variables V, D, p,and p.  Nothing is said about the nature
of the dependency. It is shown in Article 8 that, in order for the equation
to be dimensionally homogeneous, it must have the following form:

F <VDp>
v\

The function f; is unknown, but it depends on only one variable VDp/p,
rather than on the four separate variables V, D, p, and p. Observe that the
expressions FF/pV2D?* and VDp/u are dimensionless. Expressions of this
type are called dimensionless products. In general, if L denotes a length,
the dimensionless product VLp/p or VL/v is called Reynolds’ number.
Reynolds’ number is conventionally denoted by R or Nz. The dimension-
less product F/pV2L? is called a pressure coefficient, since F/L? may be
interpreted to be a pressure.

The projected area of a sphere is $rD* Consequently, the preceding
equation for the drag on a sphere may be written

F 1
pVZA_Z

The term (8/m)i(R) is called the drag coefficient. It is denoted by Cp.
Accordingly, the equation for the drag on a sphere may be written,

F = 1CppV4 )

-ff A®)

Since Cp is a function of R, we may plot a graph in which the abscissa
is R and the ordinate is Cp. Figure 1 is an experimental graph of this
relationship for smooth spherical bodies. The curve is plotted to a log-
arithmic scale, since otherwise the falling part of the curve at the left side
of the graph would be crowded very close to the vertical axis.

Figure 1 gives complete information concerning the drag forces on smooth
sphcri.cal bodies of all sizes in an incompressible fluid with any density and
any viscosity and with any speed of flow. To provide the same informa-
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tion without a dimensional analysis of the problem would require about
twenty five charts that would show separately the effects of each of the
vanables ¥, D, p, and g Figure 1 remains approtumately valid for a com-
pressible fluid, such as air, i the speed of flow 1s less than half the speed of
sound n the flid It 1s found that the location of the sudden drop in the
curve, which 1s due to the development of turbulence in the boundary
layer, depends an the mitial turbulence in the flud stream

Any pomt on Figure 1 could be obtained by a test of a model  Suppose,
for example, that the prototype 1s a smooth sphere 10 {t 1 dizmeter that
15 1mmersed 1n air at 60°F with veloaity 50 ft/sec  The cost of a testing

10
M
g 0 |
-1
20
<26 ~10 10 20 30 40 80 60 70
Logy R

Fio 1 Drag Coefficient for Smoath Spheres

Reference Das Widerstandsprobler, F Eisner, Proc 3d Intern Comgr Applied
Mechames Stockholm, 193t

apparatus to measure directly the drag under these conditions would prob-
ably be prolubitive  However the value of Cp can be obtamed by testing
a model sphere 1 {t in diameter in water at 60°F wath speed of flow equal to
38 ft/sec, since Reynolds number for the model sphere, under the specified
conditions, 15 the same as for the protetype

The preceding example illustrates two umportant properties of dimen
sionless graphs

1 A dimensionless graph provides much more information than a graph
n which the coordinates have dimensions

2 Pomtsond graphs can § be d d by tests
of models

/
~/ CoMPLETE SETS OF DIMENSIONLESS PRODUCTS

The commonest vanables 1n fluid mechanucs are force F, length L, veloc-
ity ¥, mass density p dynamic coefficient of viscosity g, acceleration of
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gravity g, speed of sound ¢, and surface tension ¢. The following dimen-
sionless products can be formed from these variables:

VLp VL u
Reynolds’ Number R=—=—: = =
I v p
Pressure Coefficient P = F -2 (p = pressure)
pVILE  pV?
V2
Froude’s Number F =—
Lg
vV
Mach’s Number M = _c_
ViL
Weber’s Number W = d -

In a gas, the pressure p, the density p, and the speed of sound ¢ are re-
lated by the equation, ¢ = V'yp/p, in which v is a dimensionless constant
(v = 1.40 for air and other diatomic gases). Therefore, only two of the
variables p, p, and ¢ need be included in problems of gas dynamics. If ¢
is omitted, Mach’s number may be written in the form, M = VV p/vp.
Aside from the factor v, this is a power of the pressure coefficient. Accord-
ingly, in gas dynamics, it is always possible to substitute a pressure coefficient
for Mach’s number.

Innumerable dimensionless products can be formed from the variables
F,L V,p,u g ¢, 0. However, it follows from a theorem that is derived in
Chapter 4 that any dimensionless product of these variables is of the form,

RaPa:Ras\[asWes

in which ay, az, a3, a4, a5 are constant exponents. On the other hand, the
products R, P, F, M, W are independent of each other, in the sense that
no one of these products is a product of powers of the others. This is ob-
vious from the fact that u occurs only in R, F occurs only in P, g occurs
only in F, ¢ occurs only in M, and o occurs only in W.

Examples of other dimensionless products that can be formed from the
given variables are V3/ug and pF/i®. However, these are not new prod-
ucts, since they are expressible in terms of the preceding products as follows:

3 '
Ve = RE, Bi; = R*P
g u

The preceding discussion suggests the following general definition:

A sel of dimensionless products of given variables is complele, if each
product in the sel is independent of the others, and every other dimension-
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less produci of the rarwables 15 o product of pouers of dimenstonless
products 1n the set

Accordingly, (R, P, F M, W) 15 a complete set of dimensionless products
of the vanables (¥, L, V, o, 1, £, ¢, o)

In most problems of flud mechanics, certain of the varables (F, L, V,
2, By g ¢, @) are absent  The dimensionless products (R, P, F, M, W),
however, usually determme & complete set of dimensionless products of a
subset of the vanables 1f, for example, surface tension 1s wmnsignificant,
Teber's number 15 discarded, 1f g has no nfluence, Froude's number 15
discarded and so forth

A physical problem may mvolve several varables of the same kind
Then the ratio of any two of these vanables 1s a dimenstonless product
Mach s number s 2 dimensionless product of this type As another ex
ample suppose that two dufferent flmds e g 2y and waier) enter nto a
phenomenon  Then the ratio of denssties and the ratio of viscosities of the
two fluids are dimensionless products

A routne procedure for calculating a complete set of dimensionless
products of any given set of vanables 15 presented in Chapter 3 However,
1n some mstances caleulation can be avoided by using the standard products
that are listed above

8 BuChINGHAM S THEOREM

Ewidently any equation that relates dimensionless products 15 dimen
sionally homogeneous, 1¢ the form of the equation does not depend on the
fundamental umts of measurement This observation may be formally
stated as follows

A sufficient condition that an equation be dimensionally homogeneous
1s that 1t be reducible to an equation among dimenssonless products

E Buckingham® inferred the fund punaple that the conditions
of this theorem are also necessary  Buckingham s theorem 1s accordingly
stated as follows

If an equation 15 dimenstonally homogeneous o can be reduced lo
a relafionsinp among & complete set of dymensionless products

This theorem 15, by no means, self-cvident An algebrasc proof of the
theorem 15 given in Chapter 4 Buckingham himself did not ngorously
prove the theorem, although he presented evidence to make 1ts truth seem
plausible

*E Buck ngham, On Physically Suilar Systems Illustrations of the Use of Dimen
sional Equations Phys Rev Vol 1V no 4 p 315 1914
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Buckingham’s theorem summarizes the entire theofy of dimensional
analysis. However, principles of dimensional analysis were employed
before this theorem was expounded. As early as 1899, Lord Rayleigh®
made an ingenious application of dimensional analysis to the problel‘n of
the effect of temperature on the viscosity of a gas (Example 8). Rayleigh’s
method is outwardly different from Buckingham’s method, but it accom-
plishes the same results. To illustrate Rayleigh’s method, let us again
consider the drag force F that a smooth spherical body experiences in a
stream of incompressible fluid. Consider tentatively a relationship of the
form,

F = VeDbprp? (@)

The exponents must be adjusted to make the equation dimensionally
homogeneous. This leads to the more special form,

F = pV2D*R» (b)

where R = VDp/u, and 2 is a numerical exponent.

Equation a is of such a restricted form that it cannot be expected to
represent the phenomenon. However, Rayleigh pointed out that special
solutions of the type of Equation b may be summed to give more general
solutions. Accordingly, a general type of dimensionally homogeneous
relationship is

F=pVD*y A.R"
1

in which the coefficients A4, are dimensionless constants. Since the series
is a general function of R, the solution is of the form,

F = pV?D¥(R)
in which f is an unspecified function.

Let us now consider the problem in the light of Buckingham’s theorem.
We assume only that the five variables are related by a dimensionally
homogeneous equation. This may be indicated by f(F, V, D, p, p) = 0,
in which f is an unspecified function. Buckingham’s theorem asserts that,
since the equation is dimensionally homogeneous, f is not actually a func-
tion of the five separate variables, but rather a function of a complete set
of dimensionless products of the variables. According to the results of the
preceding article, a complete set of dimensionless products of the variables
is comprised of the pressure coefficient, P = F/pV2D? and the Reynolds
number, R = VDp/u. Hence, by Buckingham’s theorem, the equation

* Lord Rayleigh, On the Viscosity of Argon as Affected by Temperature, Proc. Roy.

Soc. London, Vol. LXVI, pp. 68-74, 1899-1900.
* Lord Rayleigh, The Principle of Similitude, Nature, Vol 95, 1915,
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18 reducible to the form, f(P, R) = 0  This refationship may be indicated
i the exphat form, P = f{R) I {13 regarded merely as 2 symbol for
some function, the relationships, f(P, R) = 0 and P = f(R), mean the
same thing, namely, that 1t 15 possible to plot a curve that shows the rela
tionship between P and R Thus 1s essentially the curve that 1s plotted m
Figure 1 The equation, P = f(R), 1s the same result that was obtaned
above, by Rayleigh’s method ~ The reasoning that has led to the conclu
sion, P = f(R), 13 not restricted to spherical bodies, 1t 15 valid for a body
of any shape—for example an awplane wing  The form of the curve that
relates P to R depends of course, on the shape of the body ~Dimensional
analysis provides no information concerning the form of the curve

Rayletgh’s method of dimensional analysis does not differ intrmsically
from Buckingham s method The algebraic steps mn the two methods are
essentially the same However, Buckingham’s method absolves us from
the indsscriminate use of infinite series  Too often, 1t 15 not explained that
the construction of an infinite senes 15 a logwcally indispensable step in
Rayleighs method Consequently, the impression s created that the
dependent vanable 1 a physical problem may be arbitranily equaxcd toz
product of powers of the md vanables and a
This assumption s a particularly 1n
problems of heat transter, but it 15 not an essential part of dimensional
analysis

16 » vanables are connected by an unknown dimensionally homogeneous
equation, Buckingham’s theorem allows us to conclude that the equahon
can be expressed n the form of a rel among # — r
products, in which # — r 1s the number of products 1n a complete set of
dimensionless products of the varables  In Article 10 1t 15 explained how
to compute the number s In most cases, 7 ts equal to the number of funda
mental dimensions in the problem However this cannot be an mfallible
rule, since the number of fundamental dimensions 1n & problem may de-
pend on the system of fundamental dimensions that 1s used ~ For example,
problems of stress analys:s usually involve only two dimensions, [F] and
[L] However since [F] = [MLT ? there are three dimensions if the
mass system 15 used

Exaupie 4 Drac oN A Smp

The drag force that the water exerts on a ship naturally depends on the
shape of the hull However, dimensional analysis 1s of little use for pre-
dicting the ways i which phenomena are affected by mtncate shapes
Lonsequently, 1n dimensional analysis, 1t 1s often convement to elimnate
the consideration of shape effects by restricting attention to bodies of the
sarme shape, 1 bodies that are geomeincally symilar 1 the shape of the
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hull of a ship is considered to be fixed from the outset, the hull is completely
specified by its size. This may be designated by a single length L—say
the length of the hull. If the hulls that are considered are required to have
corresponding water lines, the length L also determines the draft (submerged
depth). 1In this case, the drag force F depends on the length L, the speed
V of the ship, the viscosity g of the water, the mass density p of the water,
and the acceleration of gravity g. The term g is important, since a large
part of the energy that is used to propel the ship is dissipated in waves,
and the energy of the waves depends on g.
In view of the preceding remarks, there is an equation of the form,

f(F) VaLyp)[‘)g)=0

A complete set of dimensionless products consists of the pressure coeffi-
cient, P = F/pV2L?, the Reynolds number, R = VLp/p, and the Froude
number, F = V2/Lg. Consequently, by virtue of Buckingham’s theorem,
the above equation reduces to f(P, ¥, R) =0 or P = f(F, R). This
equation may be written

F = pV*L*(F, R)

The maximum cross-sectional area A of the portion of the hull that is
below the water line is proportional to L*—the constant of proportionality
being determined by the shape of the hull. Consequently, there is a dimen-
sionless constant k, such that L? = 1k4. Substituting this in the above
equation and setting kf(F, R) = Cp, we get

F = 1CppV?4 (2)

This is of the same form as the formula for the drag on a totally immersed
body (Equation 1), but, in the present case, the drag coefficient Cp de-
pends not only on Reynolds’ number, but also on Froude’s number.

The drag coeflicient of a ship may be written in the form,

Co=Cpr+4+C"p

in which C’p is the drag coefficient due to the shearing resistance of the
water on the hull, and C”p is the drag coefficient due to inequalities of
pressure on the bow and the stern. The drag forces corresponding to these
co_eﬁicients are, respectively, called “skin friction” and “form drag.”* The
skin friction is strongly influenced by viscosity, but it is practically inde-
pendent of the wave pattern. Therefore, C'p is a function of Reynolds’
number alone. On the other hand, C”p is practically independent of
Reynolds’ number. However, because of the energy of the waves, C”

depends essentially on Froude’s number. TP

* Wave resistance is commonly differentiated from form drag.
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By means of boundary layer theory the skin fnction drag of a ship may
be computed  Although the theory for computing the form drag coefficient
1s madequate this coeflicient 15 determned by 2 model test »f the Froude
number of the model equals the Froude number of the prototype Thus
by a combination of theory and expensment the drag of a proposed hull
can be reliably predicted

Exaurie 5 Pressurr Dror v A Untrory Pree

The pressute drop Ap of iqu:d 1n a horizontal uriform pipe depends on
the length L in which the pressure drop occurs the diameter D of the pipe
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Fio 2 Pipe Frct on Factors
Reference L F Moody Trans ASWE Vol 66 p 671 Nov 1944 By courtesy of
the Amencan Soc ety of Mechan cal Lng neers
the average velocity V of the flud the viscosity ¢ the mass density p and
the average height ¢ of the surface roughness The nterpretation of the
roughness height ¢ 1s a statistical problem that has not been satisfactonly
solved However this problem need nat he consdered here The vela
tionship among the vanables 15 indicated by the equation

fAp LDeVpu=0
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By Buckingham’s theorem, this equation is expressible in terrfls of a com-
plete set of dimensionless products. A complete set of dimensionless prod-
ucts of the variables consists of the pressure coefficient, P = Ap/pV?, the
Reynolds number, R = VDp/y, and the ratios of lengths, L/D and e/D.
Consequently, there is a function F, such that

L ¢
F(P,R,E,I—))-—O

This may be written in the explicit form,

P=F(R,l£),l%> (a)

The pressure drop in a uniform horizontal pipe is determined by the
shearing stress at the wall, and this, in turn, is determined by the velocity
profile. Therefore, the shearing stress is constant. It follows that the
pressure drop Ap is proportional to the length L. Consequently, Equa-
tion a must take the more special form,

L e

Ap=3pV:o f (R, 5) 3
Equation 3 is a form of the Darcy formula. The function f(R, ¢/D) is
known as the pipe friction factor.

For a fixed value of the parameter ¢/D, it is possible to plot a curve which
represents f as a function of R. A chart that presents curves of this type
for various values of ¢/D is known as a “Stanton diagram.” Any curve
of a Stanton diagram can be plotted from data obtained by measuring the
flow of water in a single pipe, since R can be varied by varying the velocity
of the water. Figure 2 is a Stanton diagram that was constructed by

L. F. Moody. He recommends the following roughness heights for com-
mercial pipes:

Type of Pipe Roughness Height e
Drawn Tubing 5 X 1075 ft.
Steel and Wrought Iron 0.00015 ft
Asphalted Cast Iron 0.0004 {t
Galvanized Iron 0.0005 ft
Plain Cast Iron 0.00085 ft
Concrete 0.001 ft to 0.01 ft
Riveted Steel 0.003 £t to 0.03 ft

Tests have indicated that a large riveted conduit possesses no single
characteristic roughness height. Undoubtedly, two different roughness
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heights enter this problem—one representing the natural surface roughness
and the other representing the rivet heads

Exampere 6 Crrticar REynorps’ Nusser For Frow v Piees

It 15 readily shown by dimensional analysis that Reynolds’ number 1s the
enterion that determuines whether or not the flow n a pipe 1s turbulent
For, 1f there 15 a cutical veloaty Ve, at which the transition from laminar
flow to turbulence occurs, this velocity depends en the pipe diameter D,
the viscosity g, and the mass density o Consequently, there 1s a relation
ship of the form,

JVers D, p,4) = 0

The only dimensionless product that can be formed from the four variables
15 Reynolds’ number, R.; = VeDp/y, or some power of this number
Therefore, by Buckingham'’s theorem, the equation must reduce to

fRe) =0

The solution of this equation is of the form, R, = constant It has been
determined experimentally that the constant 1s about 2000, 1¢, the flow
1s lammar f R < 2000 and turbulent if R > 2000

Reynolds discussed this problem 1n essentially the same way as 1t 1s
presented here,

ExampLE 7 VIBRATION OF A STAR*

A star, being a hquid body that 1s held together by 1ts own grawvity, may
vibrate m vanous ways  Of especial th are vt
i which all particles execute simple harmonic motions that are i phase
with each other In this case, the particles stmultaneously pass through
their neutral positions and simultaneously reach their extreme positions
A vibration of this type 15 called a natural mode The sunplest natural
mode of 2 vibrating star 1s a motion 1n which the surface alternately assumes
cblate and prolate forms that are symmetrical wath respect to a fixed axis
Any small vibration of a less system 1s a of natural
modes

Corresponding to any natural mode, there 15 a defimte frequency #
{1e number of vibrations per umit time) Tt 15 known that a small amount
of viscosity does not sigmificantly affect the frequency of a system  Conse-
quently, viscosity will be neglected  Furthermore, for smplicity, 1t will

* The treatment of this problem by dimensional analysis was proposed by Rayleigh
(Reference 5}
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be assumed that the mass density p of the star is constant.® Then the
only variables that can affect the frequency # of a given mode of vibration
are the diameter D of the star, the density p, and the gravitational con-
stant . The constant £ is significant, since it occurs in the mathematical
derivation of the frequency of a system with a gravitational restoring
force, if the units of mass, length, and time are specified independently.
The dimension of & is (M 1L3T~?*] (see Example 2).

The relationship among the variables is expressed by an equation of
the form,

f(, D, p, k) =0 ()

The only dimensionless product of the variables is #%/kp, or some power
of this product. Consequently, D cannot enter the problem.
In view of Buckingham’s theorem, Equation a now reduces to

f <n2> 0 h i C?, a constant

—] = whence — =

e , ence ' R 0
It follows that n=CVkp (b)

Thus, it is shown that the frequency of any natural mode of vibration of
a star is independent of the diameter and directly proportional to the square
root of the mass density.

The same conclusions can be deduced by using the astronomical system
of measurement (see Example 2). Since, by definition, the gravitational
constant is unity in the astronomical system, Equation a takes the simpler
form,

J, D,p) =0

In the astronomical system, the dimension of p is [77%]. Consequently,
n/p is a dimensionless product. Since it is impossible to form a dimension-

less product that contains D, the diameter again drops out of the problem.
It follows,

n? n?
f (;) = 0, whence -; = (C’)%, a constant
Hence, n=CVp

This equation is identical to Equation b, if we set ¢’ = CV'E.
In general, any product that is dimensionless in the mass-length-time
system (e.g., Reynolds’ number, Froude’s number, etc.) is also dimension-

* The conclusions are the same if stars of variable density are considered, provided
that attention is restricted to stars with similar mass distributions. In the case of vari-
able density, p may be interpreted to be the density at the center of a star.
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less tn the astronomical system  However, the converse 1s not true  For
example, V/pL? 15 a dimensionless product i the astronomical system
(n which V = veloaity, p = mass density, and L == length) Conse-
quently, the astronomical system admuts more possibilities for dimenson-
less products than the mass length time system  Therefore, Af the astro-
nomical system 15 used 1n the dimensional analysis of a problem, the result
15 sometimes less specific than 1t would be if the mass length-time system
were used This aircumstance merely reflects the fact that the condition
of dimensional homogeneity 15 more festrictive 1n the mass length time
system than 1 the natural quence of the fact
that there are only two dn-nensmns n the astronomical system

ProBLIMS

1 If laminar flow exists between fixed honzontat concentric eyhndrical walls with
radi ¢ and b the veloaity w at the radius r 13 given by one of the following formulas

o ®
A 5
wedlo_p_@oay
4
log
s
B log?
u=K“ B 5o
log
s

10 which 418 the dynamc coeflictent of viscosity and K 1s the pressure drop per umit length
Determine by the dimens ons of the quantities which formula 15 correct
2 1f umform flow 1n a horizontal pipe 1s lamunar the pressure drop Af 1 a length L
does not depend on the mass density of the fuid since the particles of fluid are not accel
erated  Using this fact and the condition that Ap s proportional to Z denve the most
general form of a dimensionally homogeneous equation for 45
+ 3 Prove by dimensional analysis that the pertod of a fnctionless pendulum of any
shape 1 imversely praportional to the square oot of the acceleration of gravity and that
the period does not depend on the mass of the pendulum
4 Prove by dimensional analysis that the centrifugal force of a partcle 1s proportional
1o 1ts mass, proportional to the square of 11s velocity and inversely proportional to the
radwss of curvature of 1ts path
5 If the depth of liqud 1n a lume 15 less than a certam value yer 3 hydraulic jamp 15
possible  For a fume with a V shaped cross section, yer depends on the rate of flow
Q (volume per unit ime), the acceleration of gravity g and the angle a between the walls
of the flume  Denve the general form of the equation for yr by dimensional analysis
6 Solve Problem § far a flume of tectangular cross section, assumung that ger 18 deter
;lmncd by the acceleration of gravity and the ratio, ¢ = /b, 1 which & 15 the width of the
ume
/7 The ulumate bending moment M of a beam of rectangular cross section depends
on the width b of the cross section, the depth / of the cross section, and the yield stress
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oy of the material. Derive the most general form of a dimensionally homogeneous equa-
tion for M. Derive the more special form that the equation must take, by virtue of the
fact that A is proportional to b. Then, how does M vary with &?

+8. The pressure p at a stagnation point in an air stream depends on the pressure fo in
the free stream, the mass density po of the air in the free stream, and the velocity V of the
stream. On what dimensionless product does the ratio p /po depend?

“0. On what dimensionless variables does the drag coefficient of an airplane wing de-
pend, if the drag is affected by the size of the wing, the angle of attack, the speed of flight,
the viscosity and density of air, and the speed of compression waves in air?

10. The pressure drop Ap due to a valve, elbow, orifice, or other obstruction in a pipe
depends on the shape of the obstruction, the diameter D of the pipe, the average velocity
¥ of the liquid in the pipe, the mass density p of the liquid, and the dynamic viscosity n of
the liquid. Determine the most general form of a dimensionally homogeneous equation
for Ap. Determine the more special form that the equation takes if the effect of viscosity
is negligible. Then how does Ap vary with D?

11. The height & that a liquid will rise in a capillary tube is inversely proportional to
the diameter D of the tube. How does & vary with the surface tension ¢ and with the
specific weight w?

12. The height I of the tide that is caused by a steady wind blowing over a lake de-
pends on the average depth D of the lake, the length L of the lake, specific weight w of
water, and the shearing stress r of the wind on the water. What is the most general form
of a dimensionally homogeneous equation for /?

13. The velocity ¥ of a gas issuing from an orifice in a tank depends on the pressure p,
and the mass density pp of the gas in the tank, and the pressure $; outside of the tank.
For certain values of po and 1, the velocity of air issuing from an orifice is 300 ft /sec.
For the same values of po and p;, what would the velocity be, if the tank contained hydro-
gen, rather than air? (The ratio of the density of air to the density of hydrogen is 14.4.)

14. The speed of sound in a gas depends on the pressure and the mass density. Prove
by dimensional analysis that the speed of sound is proportional to the square root of the
pressure and inversely proportional to the square root of the mass density.

15. The speed of sound in an elastic solid depends on the modulus of elasticity and on
the mass density. How does it vary with the modulus of elasticity? With the mass
density?

16. The frequency # of any natural mode of vibration of an elastic structure, in a class
of geometrically similar structures, depends on a length L that specifies the size of the
structure, the modulus of elasticity E, and the mass density p of the material. How does
» vary with L?  With E? With p?

17, N'.eglecting viscosity, surface tension, and wave amplitude, prove that the speed of
progressive waves in deep water is proportional to the square root of the wave length.
(Rayleigh)

18. The efficiency » of a power transmission consisting of two meshed gears depends
on the diameters D and d of the gears, the dynamic viscosity u of the lubricant, the angular
speed N of the driving shaft, and the tooth load F per unit width. Make a dimensional
analysis of the problem.

d;:n?;;h; ‘:?ig; tW of a drop ?i liqu.id that falls s}ow.ly from a tube depends on the

cter ube, the specific weight w of the liquid, and the surface tension o of
the liquid. What is the most general form of a dimensionally
for W2 (Rayleigh)

) %0. %\'eglecting_ t}'1e effect of amplitude, prove that the period of any natural mode of
?:cx.llntlon ofa fmitlonless liquid in a deep vertical cylindrical can that is open at the top
is directly proportional to the square root of the diameter of the can. (Rayleigh)

homogeneous equation
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21 The frequency m at which eddies pre shed from 2 partially opened gate valve de-
pends on the diameter D of the condwit, the average velocity ¥ of the fluid m the conduit,
the dynamic viscosity u of the fund and the mass denuty p of the fuid  Denve the most
general form of 3 dimensionally bomogeneous equation for #

22 The frequency of & strng that 1s forced to vibrate by the wind 15 $12 vibrations
per second, of the wind has a certan velocity ¥ What is the frequency, if the diameter
of the string is doubled and the speed of the wind 13 halved®  (The diameter 1s the only
charactenstic of the stnng that afects the frequency }

23 Assume that the velocity ¥ of a progressive wave i a uniform stretched stang
depends on the tension T 1n the string and the masa m per unmit length and that 1t 1s inde-
pendent of the amplitude of the wave  Can it then be deduced by dimensional analymis
that ¥ does not depend on the wave length? How does ¥ vary with T2 Vith m?

21 The volume Q of water that fows over a spillway per second, per foot of length
along the crest of the spillway, depends on the height & of the water surface above the
crest of the spillway, the acceleration of gravity g,  length L that specfies the size of the
cross section of the spiliway, the mass density p of the water, the dynamic viscosity u of
the water, and the roughness height ¢ of the concrete Prove that Q does not depend
on p and 4 sepatately, but only on the ratio u/p  What 18 the most general form of &
dimensionally homogeneous equation for 07 If viscosity 13 neghgible, how does @ vary
with g2

25 Yow does the distance L from the leading edge of s smooth semiinfiite thin
plate to the point where the boundary layer becomes turbulent vary with the velocity ¥
of the stream? How does L vary with the dynamic viscosity a2 With the mass den
sity p?

26 The deflection d of & beam depends on the length £ of the beam and the stiffness
ET of the cross section, and 1t 1s directly proportional to the total load ¥ on the beam
Haw does d vacy with L2 Wath EI?

27 Liqud flows through an onfice of diameter D at the rate Q ft'/sec. Denve the
general form of the equation for the power loss caused by the orifice

28 A et of hquid 1s directed vertically upward 1 the atmosphere  Lust the varables
that determine the maxmum height to which the drops of lquid nse  Make a dimen
sional analyss of the problem



CHAPTER 3

Systematic Calculation of

Dimensionless Products

A part of the secret of analysis is the art of using notation well.

LEIBNIZ ON DETERMINANTS

Buckingham and a number of later writers on dimensional analysis have
stated the rule that the number of dimensionless products in a complete
set is equal to the total number of variables minus the number of funda-
mental dimensions in the problem. This is a convenient rule of thumb, but
it is not infallible, as has been pointed out in Article 8. Bridgman® called
attention to this fact in 1922. In 1946, Van Driest’ stated the following
rule, which may be rigorously proved:

The number of dimensionless products in a complete set is equal
to the total number of variables minus the maximum number of
these variables that will not form a dimensionless product.

Another rule that is equivalent to Van Driest’s rule will fit better into
the developments of this chapter. Before discussing this rule, we shall
recall some related algebraic principles. Proofs of the algebraic theorems
may be found in books on advanced algebra.?

9. DETERMINANTS

An 7’th order determinant is a square array of 12 numbers, to which a
value A is attached in a definite manner. A second order determinant is
evaluated as follows:
dy as

by bl = b — ashy

P, W. Bridgman, Dimensional Analysis, Yale University Press, 1922.
E. R. Van Driest, On Dimensional Analysis and the Presentation of Data in Fluid
Flow Problems, J. A pplied Mechanics, Vol. 13, no. 1, p- A-34, Mar. 1946,
M. Bocher, Introduction to Higher Algebra, Macmillan, New VYork, 1938,
29
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Let 6, be the number m the #'th row and the ¢’th column of an #'th
order determinant An (n — 1) order determmant may be formed by
crossing out the 7 th row and the ¢'th column of the given determinant
The product of this {z — 1) order deterrunant with (-1}"*¢ 1s called the
cafactor of the element @,  With this defimtion, the following important
theorem, known as Laplace’s derelopment, may be expressed*

The sum of the products formed by multiplying all numbers m 2
row (or a column) of a determinant by their respective cofactors 13
the value of the determnant

Laplace s development enables us to reduce any determnant to deter
minants of lower order For example, expansion of the following deter
minant with respect to the fourth column yields

A T
a=ff V72 Mogl o1 of4as 1 g
s -3 o |+ -1 o

s -3 2 4

In turn, Laplace’s expansion of these third order deternunants yields

2 =1 1 —~1

Il RYCTE
1 -

- (4)(—1)I3 _2(

= =@HM) + 2= + @3 - @)(—D() = ~62

Note the advantage i applying Laplace's development to rows or columns
that contain zeros

A=-@)H

raof 3

10 Numsrr or DMENstonLess PRovucts 1N A CoumpLETE SET

In order to utilze the algebraic approach to dimensional analysss, 1t 15
convenient to display the dimensions of the vanables by a tabular arrange-
ment  Suppose, for example that the varables under consideration are
velocity V, length L, force F, mass density p dynamic viscosity ¢ and ac
celeration of gravity g In the following table each column consists of the

m the d for the ding vanable
For example, the dimension of g 13 [A°L7~7), as 1s dicated by the last
column 1n the table

VL F o a

g
Hy 006 t 1 1 0
L 11 1 -3 -1 1
T[-10 -2 0 —1 -2
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In mathematics, a rectangular array of numbers is called a mairix.
Accordingly, the above table is called the dimensional matrix of the variables.

A matrix is said to be “square” if the number of columns equals the
number of rows. Any matrix contains square matrices that remain after
certain rows or columns or both are crossed out of the original matrix.
The determinants of these square matrices are called the ‘“‘determinants of
the original matrix.”” Tt occasionally happens that all determinants above
a certain order are zero. Consequently, the following definition is employed
in algebra:

If a malrixz contains a nonzero determinant of order r, and if all deter-
minants of order greater than r that the malrix contains have the value
zero, the rank of the mairix is said {o be 7.

For example, the determinant formed from the last three columns in the
above dimensional matrix is

1 1 0
-3 -1 1]=-3
0 —1 —2

Since this is a third order determinant that is different from zero, the rank
of the dimensional matrix is 3.

In dimensional analysis, the importance of the concept of “rank of a
matrix” stems from the following theorem which is proved in Chapter 4:

The number of dimensionless products in a complele set is equal to the
total number of variables minus the rank of their dimensional matrix.

For example, since the rank of the above dimensional matrix is 3 and the
number of variables is 6, the number of dimensionless products in a com-
plete set is 6 — 3 = 3. 1In fact, Reynolds’ number, Froude’s number, and
tl'le pressure coefficient are a complete set of dimensionless products of the
given variables.

11, Livear DEPENDENCE

Consider the matrix,

2 1 3 5 6
1 -2 4 7 0
5 10 0 -1 24

If the first row is multiplied by 4 and the second row is multiplied by —3
fmd the resulting two rows are added, the third row is obtained. Accord-
ingly, the third row is said to be a linear combination of the other two rows.
In general, if there exist constants corresponding to several rows of a matrix,
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such that the sum of the products of the several rows with their respective
constants 15 another row of the matny, that row 1s said to be a ‘ Linear
combination” of the other rows

The rows of a matrix are said to be Znearly dependent 1f there exists at
least one row that ts a hnear combination of other rows Otherwise, the
rows of the matrix are sud to be hineerly tndependent  If a matrix has
enly two rows, hnear dependence 15 equivalent 1o a proportion between
the rows A ly, Linear depend 1sa of the con
cept of proportionality

The follow:ng theorem concerning linear dependence 1s proved i algebra

The rows of a matrix are hinearly dependent 1f, and only +f, the rank

of the matrex 15 less than the number of rows

In view of this theorem the rank of a matrix 1s not changed, if rows that
are linear combinations of other rows are deleted Trequently, it 1s 2p-
parent by inspection that one row of 2 dimensional matnix 1s proportional
to another row or that it 15 a linear combination of several other rows
The computation of the rank of the dimensional matrx 15 greatly facilitated
if those rows that are perceived to be linear combinations of other rows are
deleted

12 EXAMFLE OF COMPUTATION OF DIMENSIONGFSS Probucts
Let us consider the vanables ¥, L F,p » g that were discussed m Article
10 Any® product = of these variables has the following form
= VhLBEhptytigh
Whatever the values of the &’s may be the corresponding dimension of » 15
&[] = LTSI M LT PMLSM3LL (T 1 s(LT-2]s
This 15 apparent from the dimensions that are given 1 the dimensional
matnx in Article 10 In accordance with the algebraic properties of expo-
nents, the above dimensional expression for 7 may be written,
[} = [U s Lottt 3 wh0Ttoki—th -]

If = 15 required to be dimensionless, the exponents of 3f, L, and T must all
be zero  Hence,
kst kit ks =0
kit btk =3k~ kst hs=0 {2)
=% — Uy — ks — Yoy =

* The use of the symbol = ta denote a d mensionless product 15 conventional, 1t has no
relation to the number 3 1416



HOMOGENEOUS ALGEBRAIC EQUATIONS 33

Any solution of these equations is a set of exponents in a dimensionless
product.

Observe that the coefficients in each equation are a row of numbers in
the dimensional matrix. Therefore, the equations for the exponents of a
dimensionless product can be written down directly by inspection of the
dimensional matrix. This is invariably true. A proof of this principle
may be obtained by applying the preceding reasoning to an arbitrary dimen-
sional matrix.

Equation a consists of three equations in six unknowns. In mathemati-
cal terminology, the system of equations is “underdetermined.” Such a
system of equations possesses an infinite number of solutions. In the present
case, any values may be assigned to three of the unknowns (say, ki, ks,
and k;), and the equations may be solved for the remaining three unknowns.
Thus, the exponents of a dimensionless product are determined. For
example, set by = —2, ky = —2, k3 = 1. Then Equation a yields 2 = —1,
ks= 0, ks = 0. Hence, a dimensionless product is V-2L—2Fp~1. This
is the pressure coefficient. Similarly, if k, = 1, k2 = 1, k3 = 0, we obtain
ki=1, by = —1, ks =0, and the resulting dimensionless product is
Reynolds’ number, VLp/u. Finally, if k=2, ks = —1, k3 = 0, we ob-
tain k4 = 0, ks = 0, ks = —1, and the resulting dimensionless product is
Froude’s number, V?%/Lg.

The foregoing procedure is quite arbitrary; any values might be chosen
for ky, ks, and ks;. For example, set & = 10, ky = —5, k3 = 8. Then
Equation a yields k4 = 8, ks = —16, k¢ = —5. The resulting dimension-
less product is

7 = VI0L-SF3,8, 1655

However, this is not really a new product, for it is determined by the
pressure coefficient P, the Reynolds number R, and the Froude number F,
as follows:

7 = PSRIF®

A relationship of this form should have been anticipated, since P, R, and F
are a complete set of dimensionless products of the variables. Regardless
of the values that are assigned to k;, ks, and ks, the resulting dimensionless
p.roduct is a product of powers of P, R, and F. This fact and the condi-
tlon that P, R, and F are independent of each other characterize them as
a complete set of dimensionless products.

13. THEORY OF HOMOGENEOUS LINEAR ALGEBRAIC EQUATIONS

Suppose that we wish to form a dimensionless product of # variables.
It has been shown in Article 12 that the exponents (ki ks, - -+, %,) in the
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dimensionless product are a solution of the Linear algebraic equations,
Gk + mba fank, =0
bt bkt bk =0 @)

m which the coelficients ay, &,, etc , are the rows in the dimensional matnx
Lquations of this type are said to be hontogeneous  In this case, the word
* homogeneous™ merely signifies that the terms on the nght side of the equa-
tions are zero

I Ky ke, Ka)y (B B’ F7a), etc, are several solutions of
Equation a, then {ky, &, , £a) 13 also a solution, in which

k= A¥ + BE 4

= AN+ Bh's 4+ etc ®
where 1, B, are any constants This may be proved by substituting
Equation bin Equationa  The solution (&, &, , k) 1s called a * inear
combination” of the solutions (k 1, k2, #,), (&, &7, , B"a), etc
Solutrons that are linear combinations of hknown solutions are, n a sense,
trvial since an unlimited number of solutions of this type can be formed.
Consequently, we are primarily mnterested 1n solutions that are linearly
dependent of each other The qiestion then anses  What s the max-
mum number of linearly independent solutions that Equation a possesses?”
The following answer to this question 15 derived m the theory of lmear
algebra

Disregarding the trasal solution ¥, = 0, Lquation o possesses exactly
(n ~ r) linearly idependent solutions, . which r 15 the rank of the
matrix of the coefficrents m Equation s 1 set of (n — r) lincarly mde
pendent” solutrons 15 called o fundamental system of solutions Any
solution 15 a lincar combination of the solutsons sn any fundamental
system

By virtue of this theorem, all solutions of a set of lnear homogeneous
algebraic equations are effectively determined by any fundamental system
of solutions
These algebraic principles have 2 direct bearing on dimensional analysis,
smce Lineatly independent solutions of Equation a furmish independent
products  Cu , any fund 1 system of solu
tons furmishes a complete set of dimensonless products  The following
two articles 1llustrate a method for computing a fundamental system of
solutions of any given set of Linear homogeneous algebraic equations
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14, CALcULATION OF A COMPLETE SET OF DIMENSIONLESS PRODUCTS

Consider the problem of computing dimensionless products of variables
P,Q,R,S, T, U, V whose dimensional matrix is given below.

1 2 345 67
P Q RST UV
M{2 -1 300 —2 1
L{t o0 —-102 12
Tio 1 031 —1 2

The first step is to compute the rank of the matrix. Consequently, the
determinant at the right side of the matrix is evaluated. This determinant
is

0 -2 1
2 1 2{=1
1 —1 2

Since this determinant is not zero, the rank of the matrix is r = 3. There
is no theoretical reason for picking the determinant at the right side of the
matrix; if the matrix contains any third order nonzero determinant, its
rank is three. However, the procedure that is outlined below is based on
the hypothesis that a nonzero determinant of order 7 occurs in the right-
hand r columns of the matrix. The columns of the dimensional matrix
must consequently be arranged so that this condition is satisfied. Occa-
sionally, this may require a rearrangement of the columns after the rank
has been computed. This does not change the rank.

Having computed the rank 7, subtract this number from the number of
variables in the problem. The difference is the number of dimensionless
Products in a complete set. Since, in the present example, the rank is
three and the number of variables is seven, there are four dimensionless
products in a complete set.

Now, write the homogeneous linear algebraic equations whose coefficients
are the numbers in the rows of the dimensional matrix. In the present case,
these equations are

2k1— k2+ 3]33—‘ 2k6+k1= 0

kl_k3+2k5+kﬁ+2k7=0 (a)
kot 3ks A~ ks — ko4 28k = 0
Any values may be assigned to %, k2, ks, ks, and Equation a may then be

solved for ks, ks, k1. It is consequently convenient to solve Equation a
generally for ks, kg, k. The solution is accomplished readily by the ele-
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mentary elmunation procedure  The result is
ke = — 11k + Ok — Oks 4 15Ky
ky = Sk — dkr -+ 5ky — Oky (b)
ky = Bhy ~ Thy + Ths —~ 12k,

Let us now assign the values ky = 1 k2 = ky = k¢ = 0 for the first solu
tion Then, by Equation b ks = =11, k=3, k=8 Smlarly, of
M=0k=1kh=Fh=0Lqutonbyeldsky =9 ks = =4,k = =1
Likewase, Equation b yields solutions for the cases &y = &y = 0, ky = 1,
k=0 and ki =k =k =0 k=1 The solutions may be neatly
arranged in the matrix form shown below

MATRIX OF SOLUTIONS
kioks ks ke ks ke b
P v

Observe that the fifth sixth, and seventh columns in the matrix of solu
tions are merely the coeffictents in the equations for &, ks, and & (Equa
tion b)  The first four columns of the matrix of solutions consist of zeros,
except for the ones on the principal diagonal  Consequently, the matnx
of solutions can be wntten down immediately by wspection of Equation b
Itisapparent that this s always true

By considering the determunant at the left side of the matrix of solutions,
we percelve that the rank of the matrix 1s invanably equal to the number of
rons Consequently, the rows m the matrix of solutions are linearly inde-
pendent  Since the matrix of solutions contains (1 — #) rows, 1t constt
tutes a fundamental system of solutions

Each row 1n the matnix of solutions 15 a set of exponents 1n a dimension
tess product  Accordingly, 1n the present case, the following complete set
of dumensonless products 15 obtained

m = PT ULV oy = QTU—VT
ws = RT WV, my= STOL-SY-1

Observe that the first vanable P occurs only 1n =, the second variable Q
occurs only i 7, the third variable R occurs only m 5 and the fourth
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variable S occurs only in ms. This is an important characteristic of the
method. It verifies the fact that the products are independent of each
other. Itis explained by the circumstance that the first part of the matrix
of solutions consists of zeros, except for the terms on the principal diagonal.

15. SINGULAR DIMENSIONAL MATRIX

Exceptional cases arise in which the rank of the dimensional matrix is
less than the number of rows that it contains, The dimensional matrix is
then said to be singular. As an example, consider variables P, Q, R, S
whose dimensional matrix is

I =R [ RN

All third order determinants in this matrix are zero; i.e.,

2 1 3 2 1 4 2 3 4 1 3 4
-1 6 =3=|-1 6 0=|—1 =3 0/=|6 —3 0/=0
1 20 =3 1 20 8 1 -3 § 20 -3 8

However, the matrix contains a second order determinant that is different
from zero. For example, the second order determinant in the upper right-
hand corner is
3 4
3=

Therefore, the rank of the matrixis » = 2. The arrangement of the matrix
is satisfactory, since a nonzero determinant of order » occurs in the right-
hand r columns. Since there are four columns in the matrix and the rank
is two, the number of dimensionless products in a complete set is 4 — 2 = 2.

In general, it is not necessary to consider all rows in the dimensional
matrix, if the rank r is less than the number of rows. Rather, it suffices to
consider 7 rows whose rank is . Since, in the present case, 7 = 2, and since
the first two rows of the dimensional matrix are themselves a matrix of
rank two, the third row may be discarded altogether. The homogeneous
linear algebraic equations corresponding to the first two rows are

2k ko4 3k3 4 4k =0
~ky + 6k — 3ky = 0 @)
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Two independent solutions of these equations are required, since there are
two dimensionless products mn a complete set  The following matrix of
solutions 18 obtained

kb kR

i X 5

10 ¥ -%

01 2 -4

Note that each row of this matnx 1s a solution of Equation a2 Also note
that, if the equation corresponding to the third row of the dimensional
matrix ts woitten (namely ki -+ 20k, — 3ks + 8ki = 0), each row m the
matrix of solutions 1s a solution of this equation This follows from the
fact that the third equation 15 a linear combination of the two Equations a
m fact, 1t 15 obtained by multiplymng the first equation by 2 and the second
equation by 3 and adding the resulting equations In general, the equa
tions for the exponents of dimensionless products are hnearly dependent
1f the ranh of the dimensional matrix 15 less than the number of rows  For
this reason it 15 generally permissible to delete all but 7 rows of the dimen
sional matrix 1 which r1s the rank of the matrix  However, 1t 1s essential
that the mateix that remams after the rows are deleted shall st:ll have rank r

The complete set of d products g to the above
matrix of solutions 15

m=PRUS™  mp= QRS

Since a power of a dimensionless product 1s still a dimensionless product
1t 15 permussible to taise a dimenstonless product to a power that elmunates
fractional exponents Consequently, the products that have been found
may be replaced by

= PMRHS, T = (RS T

16 ARRANGEMENT OF VARIABLES

There are infinitely many different complete sets of dimensionless prod
ucts that can be formed from a given set of vanables  Insofar as Bucking
ham’s theorem 1s concerned any complete set of dimensionless products 1s

ble However, gl ® has d ted, with the aid of a
well-chosen example, that some sets of products are more useful m practice
than others and that certam transformations of the »'s may brng an
cquation 7 = f(m, 7, ) Into a more tractable form  Rather than
pursue a theory of transformations of dimenstonless products, however, 1t
1s better to inquire ¢ How may a complete set of dimensionless products be
most advantageously selected at the outset?” The answer to this question
does not depend entirely on arbitrary definitions for the experimenter de
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sires that any one of the independent dimensionless variables w1, g, ¢ %y Mo
be susceptible to control by experimental techniques while the others are
held constant. This is sometimes too much to demand, because often only
a few of the original variables can be experimentally regulated. For
example, the velocity of fluid in a pipe can be regulated by a valve. On
the other hand, the acceleration of gravity is a variable that we cannot
change.

Buckingham has pointed out that we obtain the maximum amount of
experimental control over the dimensionless variables if the original vari-
ables that can be regulated each occur in only one dimensionless product.
For example, if a velocity V is easily varied experimentally, then ¥ should
occur in only one of the independent dimensionless variables. That
dimensionless variable can then be regulated by varying V. Likewise, if a
pressure p can be easily varied without affecting V, then p should occur in
only one of the independent dimensionless variables, but not in the same
oneas V.

The dependent variable of the problem must also be considered. It is
desired to know how this variable depends on the other variables. The
dependent variable consequently should not occur in more than one dimen-
sionless product. This product will be called the “dependent dimensionless
variable.”

Since the first (z — r) variables in the dimensional matrix each occur
in only one dimensionless product, the preceding conditions will be realized,
as nearly as possible, if the following rule is observed:

In the dimensional malrix, let the first variable be the dependent variable.
Let the second variable be that which is easiest to regulate experimentally.
Let the third variable be that which is next easiest lo regulale experimentally,
and so on.

In exceptional cases, this arrangement may lead to an impasse, because
the dimensional matrix does not contain a nonzero determinant of order 7
in the right-hand r columns. The variables in the dimensional matrix

should then be rearranged without altering the recommended arrangement
more than necessary.

17. TRANSFORMATIONS OF DIMENSIONLESS PRODUCTS

In the preceding article, attention was called to Buckingham’s proposal
for transforming dimensionless products to achieve greater experimental
control of the variables. Occasionally transformations are desirable for
other rcasons. For example, after a dimensional analysis of a problem has
been performed, it may be decided that a certain variable that was intro-
duced in the dimensional matrix has a negligible influence on the phe-
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nomenon Then, of this vanable eccurs mn only one of the independent
dumensionless vatiables, that dimensionless varable may be discarded
However, of the variable that 1s to be neglected occurs in more than ene
product, 1t 15 ly incorrect to discard all dimensionless
products m which 1t occurs It 1s then necessary to change to another com
plete set of dimenstonless products  Also, this 15 sometimes dessrable, 1
order to obtamn standard products such as Reynolds' number and Froude's
number
Varous complete sets of dimensionless products can be formed from a
given complete set  Tor example, i, in the dimensional analysis of the
drag on & ship (Example 4), the variables are written m the order (F, V,
L, i, p, g) (which agrees with the order recommended in Article 16), the
followng result 1s obtained by the method of Article 14

Sy mym) = 0

1w which

Now, suppose that 1t 1s desired to neglect the viscosity p - Obwviously, the
products that contain u cannot be discarded since i occurs 1n every product
However, from the products {m gz, m), another complete set may be ob
tamed as follows
. i
wied | VU

z P
R:,,,,,:u, __
B

Consequently, the equation f(m 1, 73) = 0 may be wntten f(P, R, F} = 0
or P = f(R F} which agrees with the result that nas derived 1n Example 4
Now, 1f 4 15 considered to be negligible the term R may be discarded

The Justification for replacing f(m, = ma) by f(P, R, F) 1s that the rela
tionship among 7y, 72, and 75 1s unknown all that 1s known 1s that a relation
ship eusts A relabonship among m;, 7 and ry tmphes a relationshp
among P, R, and F, since the variables m, 7 and my are determmed by
P, R, and F, and vice versa  This follows from the fact that exther set of
dimensianless variables 1s complete

When a transformation of dimensionless products 1s performed, 1t 1s
necessary to ascertam that there are as many new products as ongnal
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products and that the new products are independent of each other. Other-
wise, the new products do not form a complete set.

Exampie 8. ErrEcT oF TEMPERATURE ON THE VISCOSITY OF A Gas*

In many applications of the kinetic theory of gases, it is unnecessary to
consider the details of the structure of a molecule. A molecule may be
conceived as a tiny ball of fog. Forces of attraction between molecules
may be neglected. However, when two molecules come so close together
that they begin to interpenetrate each other, they exert a strong repulsive
force. This force is believed to be proportional to an inverse power of the
distance; i.e. F = Kr~*, in which 7 is the distance between the centers of
the molecules and 7 is a numerical exponent that is probably greater than
five. The coefficient K is a characteristic property of the molecules.

Rayleigh based his analysis on the law that the viscosity of a gas does
not depend on the density. This principle was deduced by Maxwell from
molecular considerations. It has been found to be fairly accurate for pres-
sures in the range 0.02 atm to 1 atm. For pressures exceeding a few atmos-
pheres, it is usually not tenable, partly because intermolecular attractions
come into play in dense gases.

If the viscosity of a gas does not depend on the density, it does not depend
on molecular characteristics that are related to the density: e.g., the number
of molecules per unit volume, or the mean free path of a molecule, Conse-
quently, the viscosity p must be determined by the mass m of a molecule,
the mean velocity V of a molecule, and the coefficient of repulsion K. This
is indicated by the equation,

flu, K,m, V) =0
The dimensional matrix of the variables is

© K m V

M 1 11 0
L | -1 n410 1
T | —1 -2 0 -1

The rank of this matrix is three. Therefore, there is only one dimension-

less product in a complete set. The equations corresponding to the dimen-
stonal matrix are

kl+k2+k3=0
—-k1+ (71+1)k2+k4=0
'—'kl—'Zkg-k.a‘—"O

¥ The treatment of this problem by dimensional analysis is due to Rayleigh. (Refer-
erence 4)
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Setting & = 1and solving the equations, we get

Consequently, a complete set of dimensionless products consists of the
single product,
£ = pKUO-Dg=HDIt DY rDie=D

Buckingham’s theorem yields f(x) = 0, whence = = o, a constant It
follows that
b= amHNG-DY D0 DR 31}

It 15 shown 1n the kinetic theory of gases that the absolute temperature §
of a gas ts proportional to the kinetic energy Y4m¥? of a molecule  Con
sequently the preceding equation may be expressed

1
= B e g, where s oot @

The factor 8 1s a constant

For a gnen gas m and K are constants Consequently, simce n > 1,
Equation a shows that the viscosity of a gas increases nith the temperature
Since, by Equation a, the viscosity is proportional to a power of 8, the
relationship between p and 8 1s represented by a straight Iine on logarithmic
graph paper

Equation a provides tnformation about the forces of repulsion between
molecules  For » = 5, u 1s proportional to the first power of the absolute
temperature, and, for # = %, p 13 proportional to the square root of the
absolute temperature  Rayleigh found experimentally that s = 0 754 for
air, s = 0782 for oxygen, s = 0 681 for hydrogen, and s = 0 815 for zrgon
These results show that # 13 in the range 7 to 12 for common gases

ExampLE 9 FRicTION OF A JOURNAL BEARING

Dimensional analysis has received numerous applications m the theory
of A simple, yet 18 d in this
example

Oil 1s delivered to a journal bearing through an o1l hole, and 1t flows out
at the ends of the bearing  In a bearing of this type, the journal 15 sup
ported by a thick Blm of &) The fnchional resistance of & bearing 15 com
monly d dbyad less friction /, which 1s defined
by f = 2T/WD, i which T 15 the resisting torque of the bearing, ¥ 15 the
load on the bearing, and 2 1s the diameter of the journal  The load on the
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bearing is frequently designated by the average bearing pressure P, which
is defined by P = 1W/LD, in which L is the length of the bearing.

When the journal rotates at constant angular speed N, a condition of
thermal equilibrium is established, in which heat is conducted and con-
vected away as fast as it is generated. The viscosity p of the oil at the
equilibrium temperature is naturally one of the variables that determines
the friction coefficient f. Also, the clearance C of the bearing (difference
between the diameters of the bearing and the journal) is a significant
variable.

If a shaft is supported by a single bearing, the loads that are applied to
the shaft ordinarily exert a moment M on the bearing about an axis per-
pendicular to the shaft. For the sake of generality, 2 moment of this type
is taken into account in the analysis of the problem. )

The friction coefficient f is a function of the variables P, M, L, D, C, p, N.
Since L/D and C/D are seen to be dimensionless products, the variables
L and C may be tentatively disregarded. Then the dimensional matrix is

1 2 3 4 5
P M D p N
M 1 10 1 0
L | -1 21 -1 0
T|-2 -2 0 -1 -1

The rank of this matrix is three. Accordingly, the matrix furnishes two
independent dimensionless products. The products pN/P and M/PD?
are readily discovered by inspection. Consequently, by Buckingham’s
theorem, the general form of the equation for the friction coefficient is

RN

P ' Pp;’'D’D
Thus, the number of independent variables is reduced from seven to four.
This is a great advantage in the testing of bearings and lubricants. Fre-

guently, the moment M does not exist, in which case there are only three
independent variables.

ProRLEMS
.1. Prove that (R, P, F, M, W) is a complete set of dimensionless products of the
variables (F, L, V,p, 1, 8 ¢, o).

) 2. In the example in Article 12, set & = g, b = b, k3 = ¢. Then what are the expres-
sions for ky, ks, and k> What are the expressions for 7, s, and ¢ in the following equation?
VhLkFhpkyksgls = PrRip

3. Make up an example of a dimensional matrix, in which the right-hand 7 columns

flo not contain a nonzero determinant of order . What difficulty is encountered in form-
ing the matrix of solutions in this case? (r = rank of the dimensional matrix)
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4 Calculate a complete set of dimensionless products of the following varnables
Volume Q, acceleration 4, velocity ¥, power P, momentum 3f, angular velacity N

Determine the ranks of the follow ing dumensiona) matrices and the numbers of dimen
sionless products 1 complete sets Calculate complete sets of dimensionless products
Fhminate fractional exponents

H 4_B C D F_F
{1 11 o 0 -2
Ll 3 2 1 -1 -4 0
Tl-1 -2 2 0 3 1
6 4 B ¢ D _E F_G I
vt 1 0-2 0o 1 -1 2
t|l2 2 o 1 4-2-3 5
T|-3 2 0 -1 -4 3 1 4
? 4 B C D
-2 -3
-4 3 1
2 -3 4
3 4_B C D E F G
uwfo o
iz ¢
Tlo 1
ol 2 o
9 4 B ¢ DF _F
|3 10 -1
Llo 2 1 1
T|s 3 1 0
e 4 2 2
10
v
L
T
L:]

11 The speed ¥ of the wind that creates white caps on the surface of the ocean de-
pends on the mass densities pe and pa of water and air the viscostties u, and pg of Water
and a, and the acceleration of gravity y  What 1s the most general form of 2 dimen
sionally homogeneous equation for ¥?

12 “The speed ¥ of the wind that creates ripples on the surface of shallow water de-
pends on the mass densities pu and p, of water and air the viscosities uy and pq of water
and i, the depth & of the water and the surface tension o of water What is the most
general form of a dimensionally homogeneous equation for ¥7?

13 A Liquid 1s poured at a constant rate @ ({t*/sec) 1nto a spning conical cup, and it
13 subjected to radiation to kill bactera as 1t flows up the wall of the cup under centnf
ugal action  The effectiveness of the radiation depends on the thickness of the layer of
flud on the wall This 1s deternuned by the rate of flow @, the angular veloaty n of
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the cup, the mass density p of the fluid, the dynamic coefficient of viscosity u of the fluid,
the acceleration of gravity g, the height H of the cup, and the angle « of the cone. Deter-
mine the most general form of a dimensionally homogeneous equation for the average
thickness / of the layer of fluid.

14. The maximum pitching moment 3 that is experienced by a flying boat while
Janding is a function of the following variables:

a, the angle that the flight path makes with the horizontal.

8, the angle that defines the attitude of the ship.

V, the landing speed.

m, the mass of the ship.

R, the radius of gyration of the ship with respect to the axis of pitching.
L, a length that specifies the size of the hull.

p, the mass density of the water.

g, the acceleration of gravity.

Make a dimensional analysis of the problem, suitable for plotting data from landing tests.

15. Prove that the velocity of ripples on the surface of a liquid is proportional to the
square root of the surface tension, inversely proportional to the square root of the mass
density, and inversely proportional to the square root of the wave length. Neglect
effects of gravity, viscosity, and wave amplitude.

16. If a smooth ball falls through a homogeneous fluid, it eventually acquires a “ter-
minal velocity” at which the acceleration ceases, since the weight of the ball is balanced
by the buoyant force and the resistance of the fluid. If the terminal velocity is not so
great that the compressibility of the fluid is significant, it depends on the viscosity u of
the fluid, the mass density p of the fluid, the diameter D of the ball, and the weight W’
of the ball in the fluid. (¥’ is the true weight minus the buoyant force.) Determine
dimensionless coordinates of a curve that gives complete information concerning terminal
velacities of smooth balls falling through fluids, neglecting compressibility. Explain how
to plot this curve from observations of steel balls falling in water.

17, Prove that the frequency of any mode of vibration of a drop of liquid, under the
action of its surface tension, is proportional to the square root of the surface tension,
inversely proportional to the square root of the mass density, and inversely proportional
to the 3/2 power of the diameter. (Rayleigh)

18. Assume that the rate of flow Q (ft®/sec) over a rectangular weir is independent of
the viscosity and that it is proportional to the width of the weir, ‘Then prove that Q is
proportional to the 32 power of the height of the water level above the edge of the weir.

19. Neglecting viscosity, prove that the rate of flow Q (ft3/sec) over a triangular weir
is {)roportional to the 5/2 power of the height of the water level above the notch of the
weir,

.20, List the variables that determine the maximum diameter of a drop of liquid that
“'1.11 not disintegrate while falling through a gas (e.g. a raindrop falling in air). Deter-
mine dimensionless coordinates of a single curve that completely defines the relationship.

~21‘ List the variables that determine the terminal velacity of a falling raindrop. Deter-
mine the most general dimensionally homogeneous form of an equation that expresses this
relationship.

22, Li§t the variables that determine the amplitude of oscillation of a fiexible elastic
rod that is forced to vibrate by the wind. Derive the most general dimensionally homo-
gencous form of an equation that expresses this relationship.
gml:d:‘\n ::xtrc;;lz:lr:; i:}ﬁying through a rainstorm.  Assuming t}.mt .all rai{ldrops have the

hat the shape of the nose of the fuselage is given, list the variables
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that determine the number of raindrops that strike the windshield per second Make a
dimensional anafysis of the problem

24 A umform wind in a desert bits sand into the air  Assuming that all sand grans
bave the same diameter, list the vaniables that determine the weight of sand in the arr,
per unit area of land surface  Make a dimensional analysis of the problem

25 An mrplane s warming up its engine on the ground  List the variables that deter
nune the wntensity U of sound energy (energy pec unct volume} from the prapeller at 1
dhstance L ahead of the airplane  Make a dimensional analysis of the problem

26 Tt u drop of hquid falls 1nto a poot, a small column of liquid splashes out of the paol
List the vanables that determine the beight & of the column Make a dimensional
analys s of the problem

27 Make up an example of a 3 rowed matnix whose rows are Dinearly dependent
Venfy that the rank of the matrix 1s less than the number of rows



CHAPTER 4

Algebraic Theory of Dimensional Analysis

All things are numbers. PYTHAGORAS

Dimensional analysis is so closely knitted with physical concepts that
abstract statements of its theorems are not immediately apparent. It is
possible, however, to strip the physical ideas from dimensional analysis, and
there remains a set of algebraic theorems concerning a class of functions
that is characterized by a generalized type of homogeneity. These alge-
braic theorems, which culminate in Buckingham’s theorem, are developed
in this chapter.’

For the sake of simplicity, only the three fundamental dimensions [M],
[Z], and [T] will be considered. It should be apparent that the physical
significance of the fundamental dimensions is entirely irrelevant and that

the conclusions are essentially unchanged if there are # fundamental dimen-
sions [M], [L}, [T}, {8}, [Q}, - - -, [¥).

18. GENERAL FORMULA FOR TRANSFORMING UNITS OF MEASUREMENT

The number that specifies the distance from an origin on an axis to a
point P on the axis is called the “coordinate” of the point P. In graphical
representations, the idea of coordinates is extended to other scalar entities
than distance; e.g., we may have a time axis, a temperature axis, etc.
Consequently, it is natural to refer to the variable which specifies the
magnitude of any scalar entity as the “coordinate of the magnitude.”

The general method by which the coordinate of a magnitude is trans-
formed when the basic units of measurement are changed has been explained
In Article 4. It will now be shown that this method may be expressed by a
formula. The desired formula is the solution of the following problem:

Th{? dimension of an entity is [ML*T*], and the coordinate of the
magnitude of the entity is », when mass, length, and time are meas-

* Through the courtesy of the Franklin Institute, the material in this chapter is adapted

from the author’s paper, A Summary of Dimensional Analysis, J. Franklin Inst., Vol. 242,
no. G, p. 439, Dec. 1946.

47
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ured 1 certam umts, called the “onginal umis® New units are
mntroduced, such that

1 onginal mass unit = A new mass urts
1 oniginal tength unit = B new length units

1 onginal ime umt = C new time units

In terms of the new umts, the coordinate of the magmtude1sZ  What
15 the relationship between x and Z?

This problem 15 directly solvable by the methed of Article 4 Denote
the ongnal units of mass fength, and time by (03f), (OL), and (OT),
and the new umts by (VAf) (AL) and (NT), respectively * Then,

2OV (OLPOT)] = dA«AM)*B D LPCHATY] =
Z[(A M) NLMNT)]
1t follows that
I = xA*BC [€3)

Equation 4 15 an algebraic formula for the transformation that the coor-
dinate = of 2 magmtude undergoes when the umis of mass, length, and tume
are subjected to any changes

For example to express an acceleration of 900 ft/min® in the umt
“1n fsec’, setx = 900, B =12 ¢ = 60 Then by Equation4,

Z = 9004°(12}(60) ? = 3 1n /sec?

19 MatnEMATICAL DEFINTTION OF DIMEASIOVAL HOMOGENEITY

Let ybea function of #varables 1e,y = f(xy, 7, ,s) Thesymbol
f may be regarded as an operator that 1s applied to the mdependent van
ables 21 %, , % to yield the proper value of the dependent vanable 3
1f the basic units of measurement are subjected to changes, the vanables

take new values, ¥;, %, I. § By defimtion (¢f Article ), the equation
15 dimensionally homogeneous 1f and only if,

F=f& %, %) @)
1 which f 15 the same operator as before  This condition 13 mathematically
expressed by the statement that the equation 1s * mvariant” under the
group of transformations that 15 generated by all possible changes of the
umits of mass length and ttme Now, this group of transformations is
defined by Equation 4 m which 4, B and C are arbitrary positive constants

* These symbols take the place of words such as ‘slug” *foot and second”
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The dimensions of the variables will be designated by the following dimen-

sional matrix:
Y X Nyt An

Ml|lae a a---aq
L {d b by:-+bn 4)
T lc a co - -¢tn
Then Equation 4 yields
7 = yA°B¥C° = yK
T = xlA‘"B’"C“ = a1 Ky (6)
Ty = xndmBWCon = x, K,
in which the K’s are defined by
K = A°B¥Ce
K;= 4A=BnC%, i1=1,2,---mn )
Substitution of Equation 6 in Equation a yields
Kf(xly Xo, 0 oy xﬂ) = f(lela szg, Y K"x") (8)
Thus, the following principle is established:
Theorem 1. The function f(x1, %s, - - -, xn) 15 dimensionally homogeneous

if, and only if, Equation 8 is an identity in the variables (21, %z, « - -, xn, 4,

B, C).

Note that the K’s are all determined by the three numbers, 4, B, C.

For example, the drag force on a spherical body
pressible fluid (Article 6) is given by an equation of

F=f(V:D)P1/-L)

in a stream of incom-
the type,

By Equation 8, the condition of dimensional homogeneity is

KF = f(K\V, KsD, Ksp, Kaut)

The dimensional matrix is

F V. D op 1
M 1 0 0 1 1
L 1 11 -3 -1
T |1-2 -1 0 0 -1

Hence, by Equation 7,

(b)

K =ABC, Ki=BC™, K:=B, Ky=AB, K,=AB-C-

Equation b must be an identity in the variables 4, B,C. It may be readily
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seen that this condition 15 automatically satisfied by the equation,
VD,
F = VDY (—”)
"

20 Dnuevstovat HovocEnriTy OF 4 Sum

Theorem 1 serves to venfy the theorem that a sum of terms 15 dimen
sionally homogeneous 1f, and only 1f, all terms 1o the sum have the same
dimension as the sum  Lor let f be the sum of the «'s, 1,

y=Slo e =xntmt ot
‘Then Equation 8 becomes
Aa+nt  4x)=AntKnt K.

Since this 15 an identity 1n the x's,

K=K =h= =K.
It follows, from Equation 7,
e=@a=0= =0
b=b=b=  =bh
c=a=0= =¢(
This means that the vanghles y x1, %2, x» all haye the same dimension

Actordingly this 15 a neldksary condition for Gifeionat homogenerty of
the sum By reversing the arguroent, 1t may be seen that the condition s
also sufficient
In most presentations of dimensional analysss, the condition of dimen

siona!l homogeneity of a sum of terms 1s adopted as a general definition,
1e, an equation 15 saxd to be dimensionally homogeneous 1f and enly i,
all 1ts terms have the same dimension  From 2 mathematcal viewpomt,
this defimtion 15 unsatisfactory, sintce the concept of terms” does not enter
mto the definition of a function  In mathematics, ¥ 15 said to be a function
of 21, to each value of x, there corresponds a value of y  For example, a
function may be defined by a graph  Here, the 1dea of terms mn an equa

tion 33 not amvolved  However, the concept of dimensionat homogeneity
15 not ruled out 1n this case if Theorem 115 adopted as a defimtion  Ac-
cording to this definition, a function that 15 defined by a graph 1s dimen

sionally homogeneous 1f and only i, the curve remains unchanged when
the basic units of measurement are changed in any way ~ For example, the
area A of a square whose side s £ 18 represented by a parabohe graph with
ordinate A4 and abseissa 7 This graph 1s valid trrespective of the umt of
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length. Therefore, the relationship is dimensionally homogeneous. On
the other hand, the stress-strain relationship of a material is not dimen-
sionally homogeneous, since the form of the ordinary tension stress-strain
curve depends on the unit of stress.

21. DMENSIONAL HOMOGENEITY OF A ProbuUCT

1t has been shown in the preceding chapters that expressions of the type
y = P ter PL R ML (a)

play an important part in dimensional analysis. Such expressions are
briefly called “products.”

If the dimensions of the variables (v, %, %3, « - +, ¥.) are represented by
Equation 5, the exponents of the product y satisfy the following conditions:

Theorem 2. The product y is dimensionally homogeneous if, and only if,
the exponents (ky, ks, - - +, kx) are a solution of the linear equations,

bt @kt o - aka=a
bk boket o o0+ buka =0 9)
61k1+ C2k2+ ce +C'nkn=6

To show that this condition is necessary, let y be a dimensionally homo-
geneous product with dimensional exponents (e, b, ¢). Then the function
satisfies Equation 8, In view of Equation a, this relationship takes the

more special form, B AD T
lek\xz‘:‘.‘. P xnkﬁ = K;k‘SC1k"K2k":C2k'1 e Knl‘mxnlh
1t follows that K = KKk .o« Kpfn

By virtue of Equation 7 this yields Equation 9. Thus, it is demonstrated
that Equation 9 is a necessary condition. The proof of sufficiency is ob-
tained by reversing the preceding proof.

Observe that, if y is dimensionless, Equation 9 is the set of linear homo-

geneous equations whose coefficients are the numbers in the rows of the
dimensional matrix.

22. CoMpLETE SETS OF DIMENSIONLESS PRODUCTS
Let the following expressions be dimensionless products:
T = xlk'l n-/‘,.k'z e x"k'n

T = xlk"l xf_k"z e xnk""
“esesssssrenrasesean .o

Tp = xlkx” ﬁiz"’p PN xnk,."
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The exponents of the 2's in these products are displayed by the following
matnx

(@

In accordance with the definition 1 Chapter 2, the products m, ms, 7
are said to be pendent, if there are no Iyl 5 By, other than
hy=ln= = hy = 0, such that

mhmh mMest

The following theorem d less products
will now be proved

Theorem 3 1 necessary and suffictent condition that the products wo, m,
., be tndependent 15 that the rows tn the matnz of exponents (Equation a)
be linearly independent

We shall prove this theorem by assuming conditions contrary to the con
clusion and showing that thns leads to a contradiction of the hypothess
This shows that assumptions contrary to the theorem are inconsistent
Hence, the theorem must be true

(a) Proof that the Condiion Is \ecessary Let the products be inde-
pendent, and assume that the rows i the matrix of exponents are linearly
dependent Then by the defimition of hinear dependence (Article 11),
there exist constants (f, ks, , %,) (not all zero), such that

Wk RE L+ o hhe =0, 1=12 ,n ®)

T e = et Pkt bk

Now

It follows, from Equation b,
i wde = afd g0 =1

This 15 contrary to the hypothesis that the products are independent
Thus 1t 15 proved that when the products are mndependent, the rows 1n the
matrix of exponents are linearly independent

(b) Proof that the Candstion Is Sufficient  Let the rows 1 the matnx of
exponents be Linearly independent, and assume that the dimensionless
products are dependent, 1e that there exist constants (hy, oy~ %)
{not all zero), such that

T ph =1

Then - ‘, ’
T Rk Ny et Hagke?) 2t P — g
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Since this is an identity in the 27s, the exponents vanish. But this is con-
trary to the hypothesis that the rows in the matrix of exponents are linearly
independent. Thus, it is proved that, when the rows in the matrix of
exponents are linearly independent, the dimensionless products are
independent.

Turning now to the question of computation of dimensionless products,
we observe that a product is dimensionless if, and only if, the exponents &:
are a solution of the equations,

aky + aket - -t k=0
b1k1 + bzkz + e + bnkn = 0 (10)
ciky + ks -+ ok = 0

in which the coefficients are the rows in the dimensional matrix of the x’s.
This follows directly from Theorem 2. Any fundamental system of solu-
tions of Equation 10 furnishes (1 — r) linearly independent sets of expo-
nents k'y, "y, - -+, k&™), (i =1, 2, - - -, n), in which 7 is the rank of the
dimensional matrix (i.e., the matrix of coefficients of Equation 10). By
Theorem 3, these exponents, being linearly independent, yield independent
dimensionless products. Furthermore, it is impossible to have more than
{n — r) independent dimensionless products, since Equation 10 possesses
no more than (# — ») linearly independent solutions. Accordingly, the
following important theorem is obtained:

Theorem 4.  Any fundamental system of solutions of Equation 10 furnishes
exponents of a complele set of dimensionless products of the variables x1, x,, - - -,
xn. Conversely, the exponents of a complele sel of dimensionless producls of
the variables xy, xs, + * -, %, are a fundamental system of solutions of Equation 10.

In view of the properties of a fundamental system of solutions, the follow-
ing corollary to this theorem is obvious:

Theorem 5. The number of products in a complele set of dimensionless
products of the variables x1, %y, - + -, %n 45 18 = 1, in which r is the rank of the
dimensional matrix of the variables.

23. Propucts THAT ARE NOT DIMENSIONLESS

Suppose that, in the dimensional matrix (Equation 5), the constants
8, b, c are not all zero. Under what conditions does there exist a product of
type y = arfigs*2. . . 4, k2p  The answer to this question is given by the
following theorem:

Theorem 6. I 'f 3 is not dimensionless, a product of the form y = xy ik

xn* exists if, and only if, the dimensional matrix of the variables (xy, %z, - - -,
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%) has the same rank as the dimenssonal malnix of the variables (y, =, x,,
2 %)

‘The proof of this theorem follows immediately from algebraic prnciples
For, the condition that the product y = m'irat*  x,% exst1s tantamount
to the condition that Equation 9 be consistent, since the exponents
ki ks, 4 ka (i they exist) are a solution of Equation 9 It 1s shown
algebra that Equation 915 consistent 1f, and only if, the rank of the matrix
of the coefficients of the &’s 1s unchanged when the matrix 15 augmented by
the column (a, 4, ¢)

Theorem 6 will now be used to prove the following theorem

Theorem 7 If y e f(xi, 2, 2.} 15 @ dimensionally homogeneous
egualron, and 1f y 15 not dimenstonless there exisis @ product of pouers of the
#'s that hos the same dimension as y

In order to prove this theorem let us assume that y = flzy, 22, , xa)
13 a dimensionally homogeneous equation, and that a product of powers of
the 2’s with the dimension of y does not exist It will be shown that this
assumphion leads to a contradiction  Therefore, the assumption must be
mnconsistent  This establishes the truth of the theorem

‘The dimensional matnx 1s represented by Equation 5 Let the rank of
this matrix be R Since it 15 assumed that there 1s no product of the #’s
with the same dimension as y, Theorem 6 shows that the rank of the matnx
that 1s obtained when the first column of the dimensional matnix 15 deleted
15 less than R Hence, 1t may be assumed that a nonzero determunant of
order R occurs 1n the left hand R calumns of the dimensional matnix

Let us first consider the case, R=3 Then mn view of the preceding
remarks

G a a
A=1b b b0
£ G ¢

Let (a, B, ) be the respective cofactors of the numbers (e, &, ¢) n this
determunant Then Laplace’s development yselds
A=aat b8+ cy#0 {@)
On the other hand,
g+ b8+ey=0 1=12 ,n (b)
This follows from the fact that Laplace’s development of the following
determunant yields
e o o
s B By
i a o

=gt b8+ coy
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If i=1 or £ = 2, this determinant is automatically zero, since a deter-
minant is zero if two of its columns are identical. If i = 3, 4,---, n, the
determinant is zero, since it has been shown that the rank of the dimen-
sional matrix of the s is less than three.

Since, by hypothesis, the function y = f(x1, %y, - - -, *a) is dimensionally
homogeneous, Equation 8 is an identity in the variables 4, B, C. Accord-
ingly, we may set

A=Gy B=G C=G"

in which G is an arbitrary positive constant. Then Equation b yields,
with Equation 7,
K:=1, =1,2,--+n

Hence, Equation 8 yields
K}’ = f(xl: Xoy 7y xﬂ) (C)

where K = Glaatbtey)

Now K is an arbitrary constant, since G is an arbitrary constant, and
aa + b8+ ¢y £ 0. Equation ¢ accordingly shows that there is no cor-
respondence from the a’s to y; i.e., f(xy, 2o, « * -, %) is not a function. Since
this is contrary to the hypothesis, the theorem is proved for the case in
which the rank of the dimensional matrix is three.

If the rank R of the dimensional matrix is less than three, we consider
only those rows of the dimensional matrix that contain a nonzero deter-
minant of order R. The proof is then performed as in the preceding case,
with the exception that the terms in the set (4, B, C) that correspond to the
deleted rows of the dimensional matrix are now set equal to one.

From Theorem 7, it follows that a dimensionally homogeneous equation
of the type y = f(x1, %3, - -+, ¥.) may always be reduced to the form
T = F(x, as, + + +, &), in which # is dimensionless. This form is obtained
by dividing the equation by a product of the &’s that has the same dimen-
sion as 3. Such a product can usually be found quickly by inspection.

24, REpUCTION TO DIMENSIONLESS FORM

The observation that a dimensionally homogeneous equation among
several variables can be reduced to an equation among a smaller number of
dimensionless variables is principally due to Rayleigh and Buckingham.
This article supplies a proof of this important principle.

) It is necessary to call attention to the fact that the independent variables
In a problem of dimensional analysis are always restricted to positive values.
If this were not so, dimensionless products with fractional exponents would
frequently be imaginary, However, there is a deeper reason for limiting
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the wdependent varables to positive values  Only under this restriction
1s Buckingham’s theorem logically valid

In the following discussion, the vanables (z, x; » 22} will denote the
dependent vaciables 1 2 problem of dimensional analysis  These vau
ables represent magnitudes of physical quantities such as \elocuy and
momentum It will facilitate the \l B

ployed  Without t 1 e to multsd,
sional spaces, we may refer to the \Mmbl:s (1, %3, %) 25 coordinates”
naspace S Itisanad to the und of geometrical 1
of one visualizes what 1t means i two and three-imensional spaces

Let 4, B, C be any positive constants  Let vanables Ay, K, Ka be
defined by Equation 7 The equations

o= A, 1=1,2, ,n (a)

define a pont transformation 1o the space S namely, a transformation that
carnes the powt x, to the pamt x, The powt transformation that 15
defined by Equation a will be called a A transformation, and the set of all
points that can be denved from a given pomt x , by K transformations will
be called the A space that is generated by the pomnt ', It may be
readily seen that the tesultant® of two A transformations 18 agawm a
A transformation

Several preparatory thearems (called lemmas’ ) which lead to Bucking
bam s theorem will now be proved In view of the preceding remarks, the
vanables x, ate restncted to postive values Hence the space S consists
entirely of pomts whose coordinates are positive

Lemma § A K space 1 generated by any one of s pomnts

Progf Consider the A space that 1s generated by the pomnt ', Let
«'ibe another pointin this A space Thenx , = K &', where

=(d)"(BC)
If the pomt #, also lies in the X space that 1s genesated by the pont &',
x,=Ka  where K,= A%B"C«

It follows that e

A, ,
X—'x’;v Ra”:

e

Hence, the pont #; 1s denved from the point x ’; by a K transformation
"Thus, 1 13 demonstrated that any pomnt #, that 1s derived from a pomt 2
by a K transformation may also be derived from the pomt z”, by a

*The set of all K transformations is  group 1n the algebraic sense
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K-transformation, provided that the point x”; lies in the same K-space as
the point 4’;. This verifies the theorem.

Lemma 2. The space S is completely partitioned into nonoverlapping
K-spaces.

Proof. This follows from the fact that any point in the space S generates
a K-space and that a K-space is generated by any one of its points.

Lemma 3. A dimensionally homogeneous dimensionless function, = =
f(x1, a2, + - -, %) is constant in any K-space.

Proof. Since 7 is dimensionless, its dimensional exponents a, &, ¢ are all
zero. Therefore, by Equation 7, K = 1. Also, since = is dimensionally
homogeneous, it satisfies Equation 8. Hence,

w = f(Kw1, Koxg, -+ ¢, Kpn)

This equation means that the function = is constant in the K-space that is
generated by the point (v, xg, * -+, %a).

From Lemma 3, it follows that any dimensionless product of the a’s is
constant throughout each K-space. Consequently, if m, m, -+, 7, is a
complete set of dimensionless products of the x’s, there corresponds to each
K-space of the space S a single set of values of the 7’s. The following lemma
is the converse of this statement.

Lemma 4. If my, mo, - - -, mp is a complete set of dimensionless products
of the «’s, there corresponds to each set of values of the =’s a single K-space
of the space S.

Proof. Let 7'y, 7'y, - -+, n’, be a set of constant values of the #’s, and
!et x’;and 2”, be two points of the space S that correspond to these values;
ie.,

w'h = (@D ()R (@R = (@ )R E)M - (@)

Since the 2’s have only positive values, we may take logarithms of both sides
of this equation. Hence,

ik + roko? F o kgt = 0: h= 1, 2; RS (b)

x;

A4 2 3

where ri = log (*c" )
Ry

Now, since my, m, « - -, 7, is a complete set of dimensionless products, the
exponents &3, %2 - - -, ki are a fundamental system of solutions of Eqﬁa-
tion 10, This follows from Theorem 4. Since the solutions of Equation 10
are also solutions of Equation b, the coefficients in Equation b are linearly

related to the coefficients of Equation 10; i.e., there exist constants a, B, 7,
such that

’-
aa; -+ Bb; 4 voi = ri = log (fﬁ)
x

1

-
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Letting the base of the logarithm be 10, we may write this equation i the
{orm, Fom 2 (10) b1
Let A=10°% Be=10/, C=107
Then the above equation becomes
y= " BC% = K’y

Thus, 1t 18 shown that the points &'¢ and z™*; belong to the same X-space
This verifies the theorem

The proof of Buchingham's theorem now follows immedutely. By
Theorem 7, any dimenstonally homogeneous equation y = f(x;, x3,+ , z.)
may be expressed in the form = = F(x;, 23, , %a), 1n which = 1s dimen
sonless By Lemma 4, there corresponds, to each set of values of m,
#4 , Ty, a single K-space By Lemma 3, there corresponds, to each
K space, a single value of x  Consequently, there corresponds, to each
<et of values of m, 71, , 7y, @ single value of »  In other words, # 152

single valued functionof my, 7z, , 7,  Thus anarbitrary dimensionally
homogeneous function y = f(x,, 2 x.) has been reduced to the form
#=F(m, m, ,7,) Thsis Buckingham’s theorem By Theorem 3,

# = n — 5, m which r 13 the rank of the dimensional matrix of the #'s

The converse of Buckmgham s theorem 15 a1 once obvious, 1 &, an equa
tion that relates dimenstonless products 1s dimensionally homogeneous
This observation 1s frequently regarded as adequate proof of Buckingham’s
theorem

ProBLEMS
1 Apply Theorem 1 to the equation y = x,zsts  What s the necessary and suffcient
condition that 15 obtained for dymensional homogeneity of the equation?
2 Three dimenssonless products are defined as follows
= ot
m = n Yt o
LR e e
By wnvestigating the matrix of exponents ascertain if the three praducts are mdependent
3 The dimensions of five vanables are given by the follon ing matrix

¥ 0 m ;o om

il 1 2 0
L3 -2 41
T |2 1 33

Do drmnanally wmognams probice, o e dlowng Yy et

3 = mbudmbeb

Explun
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4. Are the following equations consistent? If so, determine the solution.

3x+y+2z2=35
x42y4-4z=2
x—y—2z=0

5. The dimensional matrix of three variables is given below. Determine a product of
powers of the variables with the dimension [3/~3L2T4]. Does a product exist with the
dimension [MLT]? Explain.

Yy 3

DR

x
2
1
2
0

6. The equation y = f(x1, %, x3) is dimensionally homogeneous. The dimensional
matrix of the variables is
Y m %
M 1 1 2 -1
L 3 —~1 0 2
T | -2 =3 =2 2

In a model study of the relationship, %1, 22, and 3 are reduced by the respective factors
34, Yo, and 4. By what factor is the dependent variable y reduced? (Hint. Use
Theorem 1.)



CHAPTER 5

Similarity and Model Testing

Expenimenting with models seems to alford a ready means of nvest!
gaung and determimng beforehand the effects of any proposed
estuary or harbor works a means, after what 1 have seen, I should
feel 1t madness to neglect before entening upon any costly under
taking

O3BORNE REYNOLDS

25 Use or MopELs

Before an expensive engineering project 1s undertaken, 1t 15 sometimes
adwvisable to study the performance of a small scate rephea {model) of the
system (protatype) that 1 to be bullt Mode! studies ate performed m
order to avoid costly mistakes and to obtan information that will aid m
the design of the prototype  Since it 1s relatively mexpensive to modify
the construction of a model a cut and try ' method of design may some
times be used, which nould be excesswvely costly if 1t were undertaken with
the full scale system

It must not be assumed, however, that model studies provide ready
answers to all questions  As # general rule, one cannot devise a suitable
model test, nor can he interpret the results of 2 model test, unless he under-
stands the basic theory of the phenomenon that he 1s studymg ~ Time and
money are wasted by a test of a model that does not adequately represent
the prototype  The adage, “One test 15 worth a thousand expert opnions,”
1 consequently 2 dangerous half truth  Taen though the general nature
of a phenomenon 1s known, 1t 15 often 1mpracticable to build a model that
will furnish the desired information  Furthermare, 1t 15 wasteful to resort
to a model study, 1f the results can be predicted by theory, since the con
struction and testing of a model 1s usually expensive, compared to the cost
of theoretical inv and Not 1y, the cost
of a model study amounts to hundreds of thousands of dollars

In spite of their lymitations, model tests have proved to be mvaluable 1n
many cases, and the use of models in engineering 13 steadily increasing It
1s impossible to survey the entice field of application of models, but the
following examples will serve to indicate the extent of this field,

)
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(¢) Hydraulic Siructures. The designs of nearly all major dams are
checked, before construction, by tests of models whose sizes are usually
1/20 to 1/60 of the sizes of the prototypes. Not only are models of entire
dams tested, but also models of various parts, such as stilling basins, spill-
ways, penstocks, and gates, are studied, in order to obtain detailed informa-
tion on the flow of water and its effects on the structure. Models are also
used to study the performance of locks, flumes, conduits, and various other
hydraulic structures.

(b) Rivers and Harbors. In the United States, and in other parts of the
world, an immense amount of work is devoted to the dredging of rivers,
straightening of channels, protection of banks and bottoms from erosion,
construction of levees and floodways, and other forms of river control and
improvement. Much of this work is planned on the basis of model studies
of flood stages and scouring and shoaling characteristics. Estuaries and
harbors present special problems of model design, since the currents and
sediment transportation are here influenced strongly by sea tides. It is
consequently necessary to duplicate the natural tidal cycles in the model.
This calls for rather elaborate machinery. Wave action presents important
harbor problems that can be investigated by means of models. These
problems are concerned mainly with the effectiveness of proposed break-
waters for providing protection from waves, and with the damage that the
waves may inflict on the breakwaters. Model studies of breakwaters are
important, since breakwaters have occasionally failed to furnish the pro-
tection that was anticipated and have even had adverse effects in exceptional
cases. The seriousness of such an engineering mistake is obvious when it
1s realized that a breakwater may cost several thousand dollars per running
foot. The same remark applies to jetties, which are intended primarily to
prevent shoaling of channels. Without a model study, it may be impossible
.to predict whether a proposed jetty will keep the channel open and whether
It will cause undesirable shoaling or beach erosion in some other area.

Model tests of the type mentioned above are performed by the U. S.
Waterways Experiment Station, the U. S. Department of Reclamation, and
other agencies.

(¢) Hydraulic Machines. Performance data for centrifugal pumps, hy-
draulic turbines, hydraulic torque converters, and other turbomachines
may be approximately determined by tests of small-scale models. Models
are consequently a valuable aid to designers of large turbomachines.

(fi) Airplanes. Wind-tunnel testing plays an indispensable part in the
design of any new airplane. Lift and drag coefficients of the wing, estimates
Of. parasite drag, and other data are obtained in this way. Also, free-flight
:;E‘S‘Swt:dmle};hzz tlzssetcsl,s}ilr;“\'vil}il(;h the performances of flying models are

. response of the airplane to the controls,
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the facility of the aiplane to pull out of a spin, and other characterstics
Tree fught tunnels are inchned, so that the weight of the model has an
upstreamn component that provides the thrust  Occasionally, radio-con
trolled motor driven flying models are tested in the natural atmosphere
Take off, landing, and thight charactenstics of flying boats have been
studied 1n this way

Model airplanes are also used to study the interaction between aero-
dynamuc forces and elastic deformations of the structures At high speeds,
these interactions may produce destructive effects (wing flutter, torsional
divergence, and asleron reversal) \ing flutter, the best known of these
phenamena, 1s a violent forced vibration that occurs at a certamn cntical
veloaity

Model studies of auplanes are performed by the National Advisory
Comrmttee for Aeronautics, and by awrplane manufacturers

(e} Structures  Deflection tests and static destruction tests of structures
or parts of structuses are performed i order $o predict how well the struc
tures will fulfill therr purposes These tests are sometimes performed
on models 1f a prototype structure 1s not avaable or expendable, or of
the testing of the prototype would be dufficult or costly

(/) Siups  Drag forces and wake patterns of naval vessels, fly ing boat
hulls, and some commercial vessels are investigated by towing models by
a power dnven carnage that runs on a track above a canal i which the
wodel floats  Occasionally self propelled stup models are also used

26 FEATURES OF MODELS

If the parts of a model have the same shapes as the corresponding parts
of the prototype, the two systems are said to be geometrically similar
Geometne similanty 1s usually mamtamed 1n models of all types of fab-
nicated structures  However, for rivers, estuaries, and harbors, geomet
ncally simlar models, constructed to practicable scales, would ordwmanly
have water not more than ane fourth of an inch deep  Flow, under these
conditions, would be strongly influenced by surface tension ~ Also, movable
bed models would not function satisfactonly, since the currents and eddies
would not be strong enough to transport the sediment Consequently,
models of rivers, harbors, and estuanes are frequently distorted, 1€, the
depths of water are relatively greater than in the prototypes

1In a distorted model, the hotizontal lengths and the vertica) lengths are
reduced by different scales Consequently, the planform 1s geometrically
sumilar to that of the prototype, but the cross sections are distorted In
geometnical termunology, the prototype of a distorted model s a “dilatation”
of the model, or vice versa  This ssignifies that the prototype s obtamed
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by dilating the model to different scales in mutually orthogonal directions.
The fact that the scale factor is usually constant for all horizontal directions
is a special circumstance.

In general, there is a point-to-point correspondence between a model and
its prototype. In geometrical terminology, two points that correspond to
each other are fromologous. The concept of homologous points leads im-
mediately to the concept of homologous figures and homologous parts.
Figures or parts of the model and the prototype are said to be ‘“homologous”
if they are comprised of homologous points.

If transient (i.e. time variable) phenomena occur in a model, it is necessary
to introduce the concept of “homologous times.” For example, the tidal
period of a model of an estuary may be about 5 min, whereas the correspond-
ing period for the prototype is about 12 hr. How, then, is the state of the
model at a certain instant to be correlated with a state of the prototype?
The answer, in this case, is readily perceived. In all cyclical phenomena,
homologous times for a model and its prototype are instants that occur at
the same fraction of a cycle.

The concept of similarity extends to many characteristics besides geome-
try. For example, it may be specified that the mass distribution in a model
be similar to that in the prototype. This means that the ratio of masses
of homologous parts shall be a constant that does not depend on the choice
of the parts. In a restricted sense, this condition must be satisfied by an
airplane wing-flutter model. The condition of similarity of mass distribu-
tions is not applied to all details of the structure, but it is required that the
ratio of masses of segments of the wing and the model that are included
between homologous cross sections shall be a constant, This condition is
expressed by the statement that the spanwise distribution of mass of the
model is similar to that of the prototype. Furthermore, the chordwise
distributions of mass must be similar, to the extent that the centers of mass
of homologous segments of the wing and the model are homologous points,
and the mass moments of inertia of homologous segments of the wing and
the model, with respect to the axis of twist, have a constant ratio. Another
way of stating the latter condition is that the spanwise distributions of
mass moments of inertia shall be similar.

It is important that the axes of twist in a wing-flutter model and in the
prototype shall be homologous lines. Furthermore, the concept of simi-
larity must be extended to stiffnesses; 1.e., the ratio of stiffnesses of homolo-
gous cross sections of the wing and the model must be a constant. This
CO_nstant should have the same value for torsional stiffness and bending
stiffness, since the ratio of torsional stiffness to bending stiffness is an im-
portant factor for determining the flight speed at which flutter occurs,
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27. COMPLETE SDMILARITY

A model study furnsshes useful quahtative indications of the charactens.
tics of the prototype Usually, quantitative nformation 15 also sought
Models may be classified on the basis of the types of quantitative data that
they are intended to supply  In many cases, the pnmary result of 2 model
study s a single numenical value Tor example, the mam result of a
desteuction test of a structure 1s the ultumate load that the structyre will
sustasn  The mam result of a test of an awplane wing flutter model 15
the speed of fight at which flutter will occur

‘The numericat value that 1s obtained by a test of a model depends on
the values of the independent varables i the problem A dimensional
analysis of the relationship invanably leads to an equation of the form,

T = flm 2, w) (a)

tn which the #’s are a complete set of dimensionless products  If we wish
1o know 2 particular value of x that corresponds to speaified numeneal
values of 7, 7, mp W& may evadently achweve the result by means of
a test of a2 model, provided that the independent dimensionless variables
m M , 75 have the same values for the model as for the prototype
The model and the prototype are then said to be completely snmlar Swce
a complete set of products ds all I
products of the given vanables, every dimensionless product has the same
value for the model as for the prototype when complete similanty exists
Obviously complete simitlanty 35 tmpossible wathout geometnc strmilanty
Usually 1t 15 not feasible to 1mpose comp\e!e simlarnty n 2 model test
some of the 1ndepend vanables, which are
believed to have secondary nfluences or which affect the phenomenon 1 a
known manner are allowed to deviate from their correct values An im
portant part of the work of the model engineer—indeed the most 1mpottant
part—is to stdy his & from complete stilanty or to apply
theoretzcal corrections to compensate for them  For example, the mfluence
of viscosity on the drag on 2 ship may be estimated by means of sk friction
theory Consequently, 1t 15 unnecessary to preserve the correct vatue of
Reynolds’ number i a towng test of a model (see Example 4)

One precaution, with regard to the neglecting of dimensionless products,
must be mentioned It may happen that forces that have practically no
effect on the behavior of the prototype sigruficantly affect the hehavier of
the madel  For example, susface tension does not influence ocezn waves,
but, if the waves 1n 2 model harbor are less than one inch long, their natute
1s domunated by surface tension  Therefore, the Weber number 1s an 1m
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portant parameter for the model, although it is negligible for the prototype.
Disturbing influences of this type are called scale effects. Surface roughness
is sometimes a scale effect, since a surface that is practically smooth for the
prototype may be relatively rough for the model. Scale effects occur, to
some extent, in nearly all model tests. The best guard against them is to
build models as large as is feasible.

Exampre 10. MobpeL SHir PROPELLER

A ship with a propeller 20 ft in diameter is designed to move at a speed
of 25 ft/sec when the propeller turns at a speed of 2 rev/sec. A 1/10 scale
geometrically similar model of the hull and the propeller is to be tested in
water, in order to determine the thrust force of the propeller. It is realized
that complete similarity cannot be obtained, but viscosity is believed to
have only a minor effect, and it is consequently decided to let Reynolds’
number depart from its correct value. The problem is then to calculate
the proper speed of rotation of the model propeller, the speed at which the
model hull must move, and the percentage of reduction of Reynolds’ number
in the model.

The thrust force F of the propeller is determined by the rotational speed
n (rev/sec) of the propeller, the diameter D of the propeller, the speed V'
of the ship, the acceleration of gravity g, the mass density p of the water,
and the viscosity u of the water. Gravity exerts an effect because the
propeller creates surface waves. If the propeller is so deeply submerged
that negligible waves are created, gravity does not affect the propulsion.
Although the speed of the ship is determined by the rotational speed of the
propeller, this is partly a characteristic of the hull. Consequently, we
suppose that the speed of the model is controlled by other agencies than the
propeller: e.g. by a towing carriage.

There are seven variables in the problem, and the rank of their dimen-
§iona1 matrix is three. Consequently, there are four dimensionless products
In a complete set. A complete set of dimensionless products can be found
b_y inspection. Let us choose the set that consists of the pressure coeffi-
cient ¥/pV2D? the Froude number V2/gD, the Reynolds number VD/»,
and the velocity ratio V/uD. Then, according to Buckingham’s theorem,
the thrust is given by an equation of the form,

V: VD V)

F = pV?2D? < y— 1 ——
/ gD v auD
If viscosity is unimportant, complete similarity is insured by the condition

that the products ¥ */gD and V/uD have the same value for the model as
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for the prototype  From the prototype data, the values of these products
are
» (25)*

BT E@® = 0ex

. vy
=09705, 5= D0

Let prumes refer to the model  Then the condstion for complete sumslanty
18

wy v
L = 097 —_—
0y 09705, - = 0625

Since the model scale 1s 1/10, D' = 2§t Consequently, the zbove equa
tions yeld ¥ = 7 90 {t/sec and 0’ = 6 32 rev/sec

The Reynolds number of the prototype 15 VD/v = 500;», and the
Reynolds number of the model is V'D'/v = 1581/r  Since the model 15
to be tested 1n water, v s the same for the model as for the prototype
Consequently the ratio of the Reynolds number of the model to the
Reynolds number of the prototype 15 15 81/500 = ¢ 0316, 1 e, the Reynolds
number of the madel 15 anly about 3 percent of the Reynolds number of the
prototype It s necessary to resort to propeller theory or to expenence
to estimate the effect of this large reduction of Reynolds’ number In
this example, the afluence of viscosity may be regarded as a scale effect

28 Mopet Laws

Let us recall the equition for the drag on a body 10 a stream of mncom-
pressible fluid {Equation 1)

F = pvaLy (%L—") ()

Suppose that a gesmetrically simnas model of the body 1s to be tested n
a wind tunnel or a water tunnel  Let primes refer to the model  In order
that the unknown function f shall have the same value for the model as
for the prototype, the Reynolds numbers of the two systems must be equal,
ie,
Vie _VUy
B s
This equation may be written,

KyK K, = Ky (b)

tn which Ky = V'/V, K = L'/L, etc The K’s are called scale factors
Equations & and b yzeld

.
Er= KKK = f? ©
3
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Equations b and c are said to express the model law for a body that is im-
mersed in a stream of incompressible fluid. According to Equation c, the
drag force on the model equals the drag force on the prototype, if the two
bodies are tested in the same fluid.

As another example, consider the form drag of a model of a ship (Example
4). The form-drag coefficients C”’p of the model and the prototype are
equal, if the Froude numbers are equal. This condition yields the equation,

KV? = KL (d)
The equation for the form drag F (namely, F = C"'ppV2L?) then yields
Kyp = K,Kv*K;%* = K,K3 (e)

Model laws may be expressed by statements, rather than by equations.
For example, Equation d means that the velocity of a model ship should
vary as the square root of the linear dimensions of the model. Then, as-
suming that the model is tested in water, we perceive, by Equation e, that
the form drag varies as the cube of the linear dimensions of the model.
These principles are known as “Froude’s law.”

Equation b shows that, if a small-scale model is tested in the same fluid
as the prototype, the preservation of Reynolds’ number requires that the
stream velocity for the model be greater than that for the prototype. On
the other hand, according to Equation d, the preservation of Froude’s
number requires the opposite condition. Consequently, it is usually not
feasible to preserve simultaneously the proper values of Reynolds’ number
and Froude’s number in a model test.

Evidently, any relationship among dimensionless products can be ex-
pressed in the form of a model law.

/,
\2/9. GENERAL CONCEPT OF SIMILARITY

Consider two systems, one of which is called the “prototype” and the
other the “model.” Let us select two homologous rectangular Cartesian
space reference frames (v, y, z) and (2, ¥/, 2'), which, respectively, serve to
designate points in the prototype and in the model. Suppose that the
Lo systems are “geared together” in such a way that homologous points
and homologous times are defined by the equations:

o = K, v =Ky, 2=Kz '=Kd (11)

T.he c?nstants K., K,, K. are the scale factors for lengths in the , ¥, and
directlons. If the model is geometrically similar to the prototype, K. =
K,=K. = K;. TFor the usual type of distorted model, two of the length
sale factors are equal; ie., K= K, 3 K.. Then the ratio K./K. is
called the distortion Saclor.
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The constant K 1s called the time scale factor  In a cyche phenomenon,
the time scale factor 13 the ratio of the cychc periods of the two systems
In steady flow processes, the time scale factor may be interpreted to be the
ratio of time intervals 1n which two particles describe homologous parts of
their trajectories

It1simportant to bear in mind that, 1n transient phenomena, simultaneous
states of the two systems are nof constdered  Rather, states that occur at
homologous times are contemplated

1t 13 occasionally useful to conceive homologous directions in the spaces
{*, 3 2) and (=", ¥, 2") These are defined to be the directions of homolo-
gous straight hmes  If the systems are geometncally similar, homologous
directions are 1dentical, 1€, their corresponding direction angles are equal

The general concept of similanty may be defined 1n terms of two abstract
scatar functions f{z, y, , 1) and f'{2, ¥/, 7', I') as follows

The function f 15 stmilar lo the function { prouded that the ratio f'/f
15 a constanl, when the functions are esaluated for homologous pounts and
homologous imes  The constant ratro f /f = R, s called the seale factor
for the functson f

As a concrete example, suppose that f and f are the absolute tempera
tures at homologous pomts of a prototype and its model Then, if f /f 15
constant, the two systems are said to be thermally simiar” Observe
that the values of f and f are referred to homologous times, ¢ and £, if the
temperature distnbutions change with time

0 KINEMATIC SIMILARITA

The science of kinematics 1s the theory of space-time relationships  The

sumilanty sigmfies smianty of

motions’  In order to define kinematic similanty 1t 1s necessary to estab-

hsh a one-to one correspondence between the matenal particles of two

systems Two particies that correspond to each other will be said to be

‘h Kinematic similanty, or y of motions, 15 now
naturally defined, as follows

The motions of two systems are sumilor, 1f homologous particles he at
komologous pornts at homologous times

Homologous points and homologous times have been defined by Equation
11 It may be demonstrated that, i similar motions, the velocity vectors
and the acceleralmn vectors at hamologous points and homologous times
have b , e vawan s & secden
flurd motions are homologous curves

If kinematic similanty exists, corresponding components of veloaity or
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acceleration are similar, In fact, the scale factors for these quantities are
easily derived. In the model, a particle experiences a displacement from
the point (2, ¥/, 2’) to the point (2’ 4 da’, 3" + dy’, &’ + d2’) in the time
interval d/. Consequently, the velocity vector is

dx' dy’

, 47
v == w =

= =
= ar ar

Hence, by Equation 11, the relationship between the velocities of homolo-
gous particles of systems with similar motions is

(@) (@) (@)
=|— y ={— 17 = {—
K.’ K.’ K,

Accordingly, the scale factors for #, v, and w are, respectively:

K. K K
—> =, = (12)
K. K, K,
Consideration of the second derivatives likewise leads to the conclusion
that the scale factors for the x, y, and z components of acceleration are,
respectively:
K. K, K.
12 Klz Klz

(13)

If attention is directed to geometrically similar systems, then K, = K, =
K. = K. = length scale factor. Then, by Equation 12,

K .
7{1—' = Ky = velocity scale factor
t

Equation 13 now permits the acceleration scale factor K, to be expressed
in terms of Ky and K, as follows:
Kv?

Ke= —I—(; (14)

Q/DYNAMIC SIMILARITY

Two systems are said to be dynamically similar if homologous parts of
t!le_systems experience similar net forces. Consider two systems with
similar mass distributions; i.e.,m’ = Kmnnt, in which m’ and m are the masses
of homologous parts and K, is a constant. By Newton’s law, the total
force on a particle of the model with mass m’ is

F.=md,, F', = m'd,, F.=md,
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A corresponding equation, without primes, applies for the prototype
Hence, if kinematic simifanity exists, Equation 13 yelds

Fo Y Kby T Aok
S F-ke ' R K as)

These are the scale factors for the total force components on homologous

particles It has thus been shown that dynamic stmilanty exists, if the

systems are kinematically similar, and the mass distnibutions are similar

Integration shows that kquation 151s valid for the forces on any homologous

finite masses of the systems, as well as for infinitesimal particles
If the systems are geometncally sumilar, Equation 15 yields
KKy,

Kp = i

(16)

As an example, suppose that a one tenth scale model of an engine per-
forms three times as many cycles per second as the prototype At homolo-
gous tumes, the moving parts of the two engnes have the same relative
positions  The time scale factor 1s 1/3 since the model performs a cycle,
or any fraction of a cycle 1n one thurd of the time of the prototype  Since
the length scale factor 15 1/10 Equation 12 yields Ay = 3/10, re, at
homologous times any particle of the model has 3/10 of the velocity of the
homologous particle of the prototype Hence by Equation 14, the ac
celeration scale factor 15 9/10 1e at homolegous times any pasticle of the
mode! has 9/10 of the acceleration of the homologous particle of the pro-
totype  If the mode! and the prototype are made of the same matenal,
Kn = Ay — 1/1000  Then Equation 16 shows that the force scale factor
159/10000  For example the net force on the piston (force due to pressure
1n the cyhinder plus force of the wrist psn) 15 only 9/10 000 as great for the
model as for the prototype Howesver there 1s no determinate relationship
between the pressures in the cylinders of the two engines since the pressures
are governed by the resisting torques that are applied to the shafts

Similarly 1n cases of dynamically sumilar flud motions the force scale
factor refers to the net forces on homologous masses of the two fluds but
not to the pressure forces on homologous surface elements since the latter
forces can be changed arbutranly by changing the hydrostatic pressures on
the systems

Exaypic 11 MoDEL Law For UNDER®WATER EXPLOSIONS

When a high explosne 15 detonated under water 1t 15 converted almost
mstantaneousty imto gas The mtial pressure pq of the gas depends on
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the chemical nature of the explosive. For TNT, p, is about two million
pounds per square inch.’®

The explosion causes a spherical shock wave to be propagated through
the water. The pressure p of the shock wave, at any instant, depends on
the radius R of the wave front, the initial gas pressure po, the mass m of the
explosive, the mass density p of water, and the bulk modulus E of water.
The term E is the ratio of the pressure to the volumetric strain, and it con-
sequently has the dimension of pressure.

The relationship among the variables is indicated by the equation,

p = f(PO: R: Py E: ﬂl)

Dimensional analysis now yields

r=ri (5 %)

This equation yields the following model law:
Ky = Kg = Ky, K. = K,Kg

If attention is restricted to explosions in water, K = K, = 1. Then the
preceding equations reduce to

Kp-':Kpo: 1, ‘[{m=:I{R3

Tor example,”® 1 Ib of TNT causes a maximum shock pressure of 2200
Ib/in.? at a distance of 7.5 ft from the explosion. Consequently, 1000 lb
of TNT causes a maximum shock pressure of 2200 lb/in.? at a distance of
75 it from the explosion. In the latter case, the thickness of the shock wave
is ten times as great as for the 1-1b charge, since all lengths are altered by
the factor Kp. This may be verified by making a dimensional analysis
for the thickness of the shock wave.

Since the speed of a compression wave does not depend on the wave
length, the time scale factor must equal the length scale factor; i.e.,
K¢ = Kr (cf. Equation 12). Consequently, the duration of the surge of
pressure is ten times as great for the 1000-1b charge as for the 1-1b charge.

32. CoxpiTioNs FOR SDILAR FLOWS OF INCOMPRESSIBLE FLUIDS

In the differential equations of dynamics of incompressible fluids, the
pressure p and the specific weight pg do not occur separately, but only in
the expression p 4+ pgZ, in which Z is the elevation above any fixed datum
plane. It is convenient to denote the expression ?p + pgZ by the symbol P.
The quantity P is constant throughout a stationary fluid. Consequently,
changes of P are attributable to inertia forces. We shall call the function

PR, H. Cole, Underwwater Explosions, Princeton University Press, 1948,
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P “hydraulic head,” although, 1 hydraulics, this term usually means the
ratio P/eg

There 1s, of course, the possibility that the pressure enter exphatly mto
the boundary conditions of 2 flow problem However, if the form of the
boundary 1s known, the pressure on the boundary determunes the boundary
values of the quantity P Under these conditions, the problem can be
solved in terms of the function P, without direct reference to the pressure
Consequently, the hydraulic head P replaces the pressure p i dimensional
analyses of problems of flow of Liquids with fixed boundaries  Since g does
not then appear in the list of vanables, Froude's number 1s not among the
dimenstonless products that are obtained

The situation 18 different, 1f the hiquid has a free surface, as 1 natural
watercourses flumes, spillways, weirs, etc  In these cases, the form of the
free boundary 1s generally unknown Consequently, the specification of
the pressure at the free surface (usually atmospherc pressure) does not
determune the hydraulic head P at the free surface, since the elevation Z
1s unknown  Gravity then plays an individual role  The Froude number
and the Reynolds number d bath appear in d: 1 mvestiga
tions of flow with a free surface In some cases, the Weber number also
appears

The weight of a gas s usually neghgible compared to the other forces
thatactonit Consequently, terms that depend on gravity may be omutted,
as an approximation  Of course this approximation 13 not admussible 1n
meteorological studies nor 1n problems dealing with convection currents
that are set up by thermal differences

Since gravity does not enter explicitly into the equations that define
the flow of a iquid with fixed boundanes the velocity components {(x, 7, w)
at any pownt are determined by the viscosity 4 and the mass density p of
the fluid, a length L that specifies the size of the system and a charactenistic
velocity ¥V (eg the average velocity m a conduit)  Accordingly, di
mensional analysis ylelds

u = VA(R), ve Vi(R), w = Vfi(R)
m which R 1s Reynolds’ number The corresponding equations for a
geometrrcally sumular model are
W=VfiR), ¢=VAHR), »=ViHR
Consequently, if the model and the prototype operate at the same value

of Reynolds' number, and if the boundary conditions are kinematically
simlar
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Accordingly, the flows are kinematically similar. Thus, the following
principle is established:

A sufficient condition for kinematically similar flows of incompressible
fluids with geomelrically similar boundaries and kinematically similar
boundary conditions is the equivalence of the Reynolds numbers.

In flow of an incompressible fluid, dynamic similarity follows from kine-
matic similarity, since the mass distributions are necessarily similar (Article
31).

’)l‘he above condition is also necessary for kinematic similarity, although,
if violent turbulence occurs, Reynolds’ number has only a small influence,
since the shearing stresses due to viscosity are small compared to the shear-
ing stresses due to momentum transport by turbulence. Since turbulent
agitation increases with Reynolds’ number, the influence of Reynolds’
number always appears to approach an asymptote. Consequently, if
Reynolds’ number is sufficiently large, the effect of viscosity may be dis-
regarded.

Turning now to the case of steady flow of a liquid with a free surface, we
recall that gravity and surface tension may both affect the motion. Ac-
cordingly, dimensional analysis yields

u=VAiR,F,W), v=VLRFEW), w=ViRFW)

in which R, F, and W are Reynolds’ number, Froude’s number, and Weber’s
number. Consequently, in this case, kinematic similarity and dynamic
similarity exist, if the boundary conditions are similar, and R, F, and W
have the same values for the model as for the prototype. Although it is
not always possible to realize these conditions, the effects of Reynolds’
number and Weber’s number are frequently small.

33. ConpITIONS FOR SIMILAR Frows orF GASES

For definiteness, supersonic flow about an airfoil is considered. The
reasoning is essentially the same for other types of flow. The velocity
field is influenced, to some extent, by the temperature distribution at the
boundary, and by the coefficient of thermal conductivity of the fluid.
However, these effects are usually neglected. Then the velocity component
u at any point is determined by the velocity V of the stream ahead of the
airfoil, the pressure po and the mass density po of the undisturbed stream,
a length L that specifies the size of the airfoil, and the kinematic viscosity
». The speed of sound ¢, in the undisturbed region is given by the formula,

o = [0

pPo
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Thus, po may be calculated, if ¢ and pq are given  Therefore, 1n the hst
of independent yarbles, po may be replaced by ¢y A dimensional analysis
of the problem accordingly yields
u=VARM), o=VLiRM), w=ViRM)
m which R and M are Reynolds’ number and Mach’s number It follows
that the sveloaity field of the prototype 1s kinematically stmilar to the
veloaty field of a geometnically stmar model if, and only 1f, the Reynolds
number and the Mach number have the same values 1n erther system
‘The mass density p at any pomnt 1s given by an equation of the type,

2= pof (R, M)
C 1y, the mass d. in the two systems are simular, if the
conditions for kinematic similarty are satisfied  Therefore, in compressible
flows of gases, dynamic lanty 158 of k simslanty

It 1s rarely feasible to cons\ruct a model that preserves the correct values
of both Reynolds’ number and Mach’s number  However, if the veloaty
1s small (M < }4), Mach s number has Ltle effect on phenomena in a free
stream of ur (¢ g flow about an airforl)  On the other hand if the velocity
1s large (M > 0 80), Mach s number has a pronounced effect Then the
effect of Reynolds’ number 1s usually small ~ Strictly speaking, the thermal
and dynamical properties of a real gas cannot be defined by a few character
stic and ly other than Reynolds’ number
and Mach’s number may affect supersonic flow

34 Esprrical MrTiiops v MoDEL ENGINEERING

Geological phenomena, such as erosion and sediment transportation, are
frequently studied by means of models These phenomena are so strongly
influenced by mechanical properties of clays, rocks sediments, etc, that
exact laws of sumlarity cannot be deduced  Consequently, empirical or
semuempirical 1nterpretations of model data are employed

For example 1t might be desired to predict the progress n the scouring
of the banks of a nver during the next fifty years Supposc that actual
detailed observations of the scour during the past twenty years are avall
able The model engineer’s approach to the problem 1s to construct a small
scale model of a portion of the rver, using some synthetic erodible matenal
for the banks and the bottom  Many different materials have been tried
for this purpose  The consistency of the matenal should be adjusted 50
that the scour that occurs 1n the model in the course of a few weeks duplicates
the scour that has been observed in the prototype i the past twenty years
Thus pracess 1s called * venfication” of the model It 1s reasonable to as-
sume that, when venfication has been achieved, the continued operation
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of the model for a few months will project the behavior of the prototype
many years into the future.

Essentially the same procedure is used to predict the shoaling of tidal
channels and harbors. Of course, an effort is made to produce flow in the
model that is similar to that of the prototype, since similar bed movements
can scarcely be expected, if the flows of water are dissimilar. Many
questions of shoaling are raised by proposals for new structures, such as
breakwaters and jetties. In these cases, the history of the prototype is
known only for the period before the installation of the proposed structure.
It is consequently necessary to bring the bed movement of the model into
synchronism with the recorded bed movement of the prototype before the
proposed structure is installed in the model. This method rests on the
assumption that similarity of bed movements, once established, will not be
disrupted by the installation of the new structure.

Empirical methods of model engineering provide the only known way
of grappling with many difficult problems that are, at present, beyond the
scope of rational analysis. The success of model studies of this type de-
pends, to a large degree, on the skill and experience of the operator, and on
the engineer’s knowledge of the factors that influence the phenomenon that
he is studying.

35. UskE OF THE PRINCIPLE OF SIMILARITY IN MATHEMATICAL INVESTIGA-
TIONS

Mathematical derivations are frequently encumbered by complicated
functions of the constants in the problems. A preliminary dimensional
analysis of a problem may reveal the ways in which some of the constants
enter into the final solution. Then, if the problem is solved for the case in
which these constants have specified numerical values (e.g. unity), the
solution may be immediately generalized to cover the case in which the
constants have arbitrary values.

For example, in calculating the behavior of an airfoil by conformal
mapping, it is convenient to apply the mapping function to a circle that
passes through the point —1 in the complex plane. This results in an air-
f?il whose chord is approximately 4 units. When the behavior of this
airfoil is known, the characteristics of a geometrically similar airfoil with
an arbitrary chord can be determined by the principle of similarity.

.As another example, suppose that design charts for plate-stringer com-
bm‘ations of an airplane wing are constructed, for the case in which the
stringers are 2 in. deep. From the knowledge of the relative strengths of
geometrically similar structures, it is possible to use these charts for stringers
of any depth.

Frequently, it is advantageous to seek the significant dimensionless
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products of a problem, before the mathematical aualysns 15 carned out
Then the original daff may be d 1 terms of di-
mensionless notations  This method 15 pamcu!arly useful when numerical
methods of solution are employed, since the result of a numerical analys:s
13 greatly broadened by a reduction of the number of varables

ProbLEMS

1 Two smooth balls of equal weight but different diameters are dropped from a
balloon The ratio of diameters Is 3 What 13 the ratio of terminal veloaiies® (The
terminal velocity 1s the velocity st which the air resistance balances the weight ) Are
the flows completely smilar? Lxplain  (Neglect compressibility )

2 Tf, in Problem 1, the prototype 1 a ball 1 {t 1n diameter that weighs 5 b and that
falls in standard sir (u = 00001783 poise), what 15 the weight of a solid steel ball (sp
wt = 490 th/it?) that 1s dropped 1 water (u = 001140 poise) of the two cases are com
pletely mmular?  If the termunal veloaity for the prototype is 75 ft fsec, what 1s the ter
minal veloarty of the steel ball> Hint  Note effect of buoyancy

3 A Mo scale fiying model of a flying boat is completely similar to the pratotype
The mode! takes off at a speed of 30 /by Neglecting viscosity, calculate the take-off
speed of the prototype

4 A model of a rubble breakwater is constructed of rocks that each weigh 21> The
rocks bave the same specific gravity as those of the prototype  Appreciable damage to
the model i observed if the wave height exceeds 1 ft What 1s the minimum weight of
each rock 10 be used i the prototype if the prototype 1s to withstand geometncally
sumilar waves 20 ft high?

5 The outer surface of & model airplane wing 15 geometrically sumlar to the proto-
type The scale factors for length mass and stiffness are Ky, = 1/10, K = 1/100,
K,=1{400 (The dsmenswon of stiffness 1 (FL3) What 18 the ratio of natural fre-
quencies of corresponding modes of vibration of the model and the prototype?

6 Tt 1adesired to test a half scale wind tunnel model et the same Mach number and
the same Reynolds number as the prototype  If the prototype opetates 1n standard axr
and the wind tunnel air 18 at standard temperature what 15 the denuty of the wind
tannel a? (Note  The dynamic coeflicient of viscoaty and the speed of sound depend
only on the temperature )

7 Ttis deswred to obtum the logarithmic decrement (¢ the logatithm of the ratio
of amphtudes of successive oscillations) of a ship that 1s rolling freely in a calm sea  The
loganthmic decrement d depends on a Jength L that specifies the size of the ship the
moment of mertia I of the ship with respect to the ax1s of roll, the mass m of the ship,
the kinematic viscosity » of the water the mass density » of the nater and the accelers
tion of gravity g Denive the most general form of a dimensionally homogeneous equa
tion for ¢ Why 131t practically impossible to perform a small scale model test that pre-
serves complete stmlarity?

8 For a model of an estuary, Ky = K, = 1/1000, K, = 1/100 The period from
high tide to high tide 13 6 min What 15 the distortion factor? If kinematic simlanty
emsts, what are the veloaity scale factors Ay K,, K,? What are the scale factors for
the #, ¥, and # components of acceleration? For the # » and 5 components of force?
Wk s Ve 18 h e wpedes vi Gow i Wonabugous purmis, e drenon wsnes O
the veloaity vector 1n the model are 3¢ 3§, —3¢? Assume that the tidat penod of the
ocean is 12 hr
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9. A concrete block (sp gr = 2.50) that weighs 200 1b in air slides on the bottom of a
river when the current is 10 ft/sec. Assuming constant coefficient of friction, calculate
the current required to move a geometrically similar block with sp gr 3.00 and weight
300 1b in air. Neglect viscosity.

10. A model of an airplane wing is to be tested in standard air, to determine the air
speed V at which flutter occurs. The speed V' depends on the mass density of the air, the
mass of the wing, the stiffness of a cross section of the wing, and the length of the wing.
The length scale factor is 1/10, and complete similarity is obtained. The air speed at
which the model flutters is one half of the speed of flight at which the prototype flutters.
What is the stifiness scale factor? (See Problem 5.)

11. A new form of flow meter, when tested in the laboratory, yielded a drop of pressure
of 9 1b/in.2 for a flow of 3 ft?/sec through a 6-in. pipe. If the same fluid is tested at the
same temperature in a geometrically similar system, with a 24-in. pipe, what is the flow,
if dynamic similarity is maintained? What is the pressure drop?

12. The gates of a canal lock extend the full height of the lock. When a vessel is being
lowered in the lock, the gates at the outlet end are being opened at the rate of 10 in. /min.
The currents produced by the outflow of water cause the vessel to pull at its moorings. In
a 1/25 scale geometrically similar model of the system, the mazimum tension in the haw-
sers is 20 Ib when the gates are opened at the proper rate. What is the correct rate of
opening of the gates of the model? What is the maximum tension in the hawsers of the
prototype? Neglect viscosity.

13. Wave motion in a horizontal canal is to be studied by means of a geometrically
similar model. The model contains water, and the length scale factor is 1/5. Neglecting
friction and surface tension, calculate the velocity scale factor, the time scale factor, the
acceleration scale factor, and the force scale factor. Calculate the scale factor for the
derivative of acceleration with respect to time. In the prototype, a wave travels a cer-
tain distance in 10 sec. In what time does the wave travel the homologous distance in
the model?

14, A fluid is discharged from a nozzle in the form of a jet that breaks into a spray ata
distance of 5 in. from the nozzle. The diameter of the jet is 0.03 in., and the velocity of the
jet is 40 ft /sec. The surface tension of the fluid is 0.003 1b/ft. Another fluid with the
same density and the same viscosity as the first fluid, but with surface tension equal to
0.005 Ib /it, is discharged from a geometrically similar nozzle. Calculate the scale factors
for length, velocity, and time to insure kinematic similarity. What is the diameter of
the second jet? The velocity of the second jet? At what distance from the nozzle does
the second jet break into spray? What is the ratio of volumes of homologous droplets of
spray? Which spray has the greater range? (Neglect gravity.)

15. A body with mass m executes damped oscillations under the action of a restoring
force that is proportional to the displacement and a resisting force that is proportional
to the square of the velocity. The ratio of the restoring force to the displacement is
called the “spring constant,” and the ratio of the resisting force to the square of the veloc-
ity is called the “damping constant.” A small-scale model of the system is to be tested.
The scale factors for mass, length, and time are respectively 1/100, 1/5, and 1/20. Cal-
culate the scale factors for the spring constant and the damping constant.

16_. The equation y = f(a, 2, 73, #,) is dimensionally homogeneous. The dimensional
matrix of the 2's is

X1 X2 X3 X
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T a model study of the relationship, the vaniables =, 5, %, and =1 are reduced by the
respective factors K; K, Ka Ko What relationship must the A’s satisfy, if the reduc
tion factor of ¥ 15 such hat complete similarity 15 obtained?

17 A 14 scale model of 2 boat s constructed  Neglecting viscosuty, determne the
correct scale factors for area, volume, weight, force, moments of force, moments of mertia,
veloaity, acceleration, angular veloaity, rotational gpeed of the propeller, horsepower,
and tune  The prototype weighs 100000 1b, and 1t has 8000 hp  Calculate the weight
aad the power of the model



CHAPTER 6

Dimensional Analysis Applied to Problems

of Stress and Strain

36. INTRODUCTION

The difference between the number of original variables and the number
of dimensionless products in a statical problem of stress analysis is usually
two, since these problems involve only two dimensions: force and length.
Although there are three dimensions if the mass system is used (by virtue
of the relationship [F) = [MLT~?%]), the rank of the dimensional matrix,
in any case, is not greater than two.

If two geometrically similar structures have similar loadings (in the
sense that the loads on homologous parts have a constant ratio), they are
said to have the same type of loading. If the type of loading on a structure
is prescribed, all the loads are determined by a single force; e.g. the total
load. However, in some instances, it is convenient to suppose that certain
moments are applied to the structure, in addition to the forces. To be
sure, a detailed specification of the forces on a structure determines the
moments, but it may be useful to specify the moments in order to omit
some of the details concerning the forces. For example, it is usually
adequate to say that a certain moment is applied to the end of a beam, with-
out specifying the exact distribution of force on the end. If moments and
forces are considered to be distinct entities, the loads on a structure with a
prescribed type of loading are determined by a single force F and a single
moment A{. Also, since a class of geometrically similar structures is con-
templated, the size of a structure is determined by a single length L.

37. LARGE DEFLECTIONS OF ELASTIC SySTEMS

In elasticity theory, deflections are understood to be “large,” if the load-
deflection relationship is essentially nonlinear. For example, the deflec-
tions of a flat plate are said to be large if membrane action is significant
with respect to the bending action, since the membrane action introduces

a nonlinear load-deflection relationship. Beam-column theory presents
79
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another example of large deflections Likewise nonlinear relationships
enter wto ordinary elastic heam theory 1f the deflections are very large
In general the deflections of an elastic structure may be sard to be  small
if and only if they are determned with sufficient accuracy by the classical
linear theory of elastiaity

Insofar 2s dimensional analysis 1s concerned large deflections require
no special consideration  On the other hand an important simphfication
tesults of the deflections may be treated as small

Consider an elastic system with a specified shape and a speaified type of
loading Then according to the remarks of the preceding article, the size
of the system and the load on each part are determined by a single length L
a single force F and a single moment A Hence any component ¢ of the
stress at a specified point 1s determmed by an equation of the type

a=f(' M L Ev)

i which E 15 Youngs modulus and » 1s Poisson's ratio Likewise any
component u of the deflection at a specified pomnt 1s determned by an
equation of the type

u=f(F M LEp

Dimenstonal analys:s of these relationships yields

") ®

F(F M
"=Z‘Z/'(EL‘-‘E”‘ ®

These equations yield the following general model law for statically loaded
elastic structures

K, =1 Kr = KeK® K= KpKr
17)
Kr (¢
K, = =i Kz Au=K.

mn which the K s are scale factors {Article 28)  Since Poisson s ratio does
not enter into analyses of trusses and other frames 1t 15 unnecessary to
maintan the condition X, = 11n model studies of this type of structure

Exampie 12 MoDEL oF an ARCHERY Bow

In order to design an alununum alloy archery bow for commercial pur
poses a 3/4 scale hickory model was made A force of four pounds was
required to draw the model bow the length of a model arrow  The modull
of elasticity of hickory and aluminum alloy are respectively 21 X 10°
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Ib/in.2and 10.5 X 10°1b/in.2. Tt isrequired to calculate the force necessary
to draw the prototype bow the length of an arrow.

The given data are K1 = 3 and K= 2.1/10.5=%. The condition,
K. = Ky, is automatically satisfied, since the length scale factor for the
arrows is the same as for the bows. Equation 17 accordingly yields

1\ /3\? g F
K‘”'(E)(Z) %" F

in which the prime refers to the model. Since F' = 4 Ib, it follows,
F = 35.5 Ib; ie., the force required to draw the aluminum-alloy bow is
35.51b.

38. StaTicAL LoADING BEVOND THE YIELD POINT

If a material is loaded above the yield point, permanent set results when
the load is relieved. Since, within certain limits, any specified amount of
set can be realized, there is no unique relation between stress and strain in
the inelastic range. However, the strains are determined by the stresses,
if the stresses increase slowly and monotonically* during the loading, and
appreciable creep does not occur. Attention will be restricted to this case.

According to the Hencky-von Mises theory of plasticity, the general
stress-strain relationship of a material, under monotonic increasing load-
ing, is determined by the ordinary tension stress-strain curve, and by the
value of Poisson’s ratio in the elastic range. To plot the tension stress-
strain curve of a material in a dimensionless form, we may let the ordinate
be ¢/E, in which ¢ is the true tensile stress and E is the value of Young’s
modulus in the elastic range. Two materials will be said to have the same
Iype of stress-sirain relationship, if their dimensjonless stress-strain curves
are identical. If the type of stress-strain curve of a material is preassigned,
the stress-strain relationship is determined completely by the elastic modu-
lus E and Poisson’s ratio ». Analogously, the geometry of a system with a
given shape is defined by a single length L. Accordingly, when attention
is restricted to materials with the same type of stress-strain relationship
(?n particular, when all structures are made of the same material), the dis-
tinction between elastic materials and inelastic materials is eliminated,
i{lsofar as dimensional analysis is concerned. Hence, the model law (Equa-
tion 17) remains valid for the strain-hardening range. This law may be
expressed in words, as follows:

If the linear dimensions of a structure are changed by a factor k, the
applicd forces are changed by the factor k%, and the applied moments are

L - . . . - . .
In mathematics, a function is said to increase monotonically if a positive increment
of the independent variable never causes a decrease in the value of the function.
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changed by the factor B, the deflections are changed by the factor k and
the stresses are unchanged

“This 15 a remarkably general law, for it 13 independent of the stress strain
curve of the matenal, and 1ndy dent of the des of the defl
It should be observed, however, that, when the weight of the structure
contributes appreciably to the Joad, the conditions of the theorer cannot
be satisfied, since an alteration of the linear dimensions by the factor £
necessanly alters the weight by the factor

Ordinnly, the stress that causes failure of a structure (fracture, yeld-
1ng, buckling, etc ) does not depend appreciably on the size of the structure
Tor example, it has been found evpenmentally that statically loaded
geometrically smular jonts, made of 24S T aluminum alloy sheets and
17S T nwets, fail at practically the same stress, irrespective of therr size 1
On the other hand, some observers have noted appreciable scale eflects
statically loaded notched tensile specimens of magnesium

Endurance limits of materals exhibit pronounced scale effects It 15
found that the theoretical stress concentration factors of elasticity theary
are much too large to account properly for the endurance hmts of small
notched fatigue specimens  However, if the specimens are so large that
many millons of crystallites Le m the regions of high stress concentraton,
the endurance imits approach those of unnotched specimens, if the theoreti
cal stress concentration factors are employed  The cause of scale effects 1
fatigue 13 not clearly understood However, since the crystallites are rarely
scaled in the same proportion as the of
the existence of scale effects 1s not surprising

In mmpact tests, scale effects sometimes result from the fact that all
specimens are not loaded at the same rate, since fracture stresses may be
1nfluenced by the rate of stressing

Exarpie 13 Wisp Loaps ox Larce Winpows

Recent proposals for ly large windows have raised
the question of allowable wind pressures on windows ~ Stnce the deflection
of a large window may be many times 1ts thickness, the question belongs
to the class of large-deflection problems of plates

A large window 1s supported by fixtures that offer no restramnt to rotation
of edges of the window  Although there 15 some remstance to linear deflec
tions of the edges, the beams that support the edges may have appreciable
‘Fexiolutry

WR L Fefferman and H L Langhaar, Investigations of 245 T Riveted Tension
Jouts, J Aeronaut Ses Vol 14,0 3 Mar 1947
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To make a model study of the problem, a small horizontal pane of glass,
supported in the same manner as the prototype, may be loaded with sand
until it breaks. Let us consider the model law for this type of test.

A class of geometrically similar windows is considered. It is important
to recognize that the same-scale factor applies for the thickness as for the
width and the height. This requirement sometimes introduces a practical
difficulty in tests of this type, since sheets that are thin enough to insure
geometrical similarity may be unavailable.

Assuming that geometrical similarity of the panes of glass is obtained,
we may specify the size of the window by a single length L. Any stress
component ¢ at any specified point of the glass is determined by the wind
pressure p, the characteristic length L, the modulus of elasticity E of glass,
Poisson’s ratio », and the flexural stiffiness B = Eil, of the beams that sup-
port the edges. Dimensional analysis accordingly yields

The resulting model law is
K, =1, K, = K&, Kp = KeK/}, K, =K,

Since the model is to be made of glass, K, = Kr = 1. Consequently, the
equations reduce to
Kp-’:K,,:l, KB=KL4

Accordingly, the stiffness of the supporting beams should vary as the fourth
power of the linear dimensions of the glass. When this condition is satis-
fied, the model and the prototype experience the same stresses, if the ap-
plied pressures are the same. If the weight of the glass model is significant,
it may be regarded as a part of the applied load. Since the model is made
of glass, it will break at the same stress as the prototype—barring differ-
ences in the physical properties that result from manufacturing processes.

39. BENDING OF DUCTILE BEans*

Consider a class of ductile prismatic or cylindrical beams with similar
cross sections that are symmetrical with respect to two perpendicular axes.
Let a beam be bent in a plane of symmetry by a bending moment 3/, and
let the size of the cross section of the beam be specified by the distance ¢ from
the neutral axis to the outermost fiber. Consider beams of the same mate-
rial, and assume that the stress-strain curves for tension and compression

*This material is adapted from a master’s thesis by W. B. Sanders, Jr., which was

submitted to the Department of Theoretical and Applied Mechanics of the University of
linois,
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are identical  Let the curvature of the neutral surface, due to bending, be
1/r Then,
1/r = f(M, ¢, F)

Dimenstonal analysis now yields

¢ M
=S (E) (@)
The theory of elastic beams suggests that, instead of the varable 3/Ec*,
we should preferably employ the variable M¢/EZ, in which I 15 the moment
of wertia of the cross section about the neutral axis  This change of van
able 15 permissible, since /¢ 18 proportional to ¢ if the shape of the cross
section 1s given  Accordingly, Equation a may be written
3 Mc
! (Els, ®
1n which ¢, 1s the strain at the yield point of the matenial  The introduction
of the factor ¢, results 1n convement numencal values of the vanables, A
more significant reason for introducing this factor will appear later
Equation b shows that a curve may be plotted with abscissa Mc/Ele,
and ordinate c/re, In the elastic range c/re, = Mc/Lle,, and therefore
the first part of the curve 1s a 45° straight ine  Furthermore, the curve 1s
asymptotic to a vertical line, since there 1s an ultimate bending moment for
a ductile beam  The general form of the curve 1s shown in Figure §
In order to plot the curve accurately we make use of the equation of

statics,
M=2 j: bor dz ©

m which 2 13 the ordinate erected from the neutral axs of the cross section,
15 the width of the cross section at ordinate z, and o 18 the stress at ordinate
z Setz=ctandd=¢8 Then Equation ¢ becomes

1
M= 2;‘.[ Bat db

The stram at ordinate 1se = z/r = cf/r  Set

£=1(2) /(%)

de 2w o (a
Ely, Ie, j.: s (u,) & @

Then
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The function f(ct/re,) is represented by a dimensionless stress-strain curve
with ordinate ¢/E and abscissa /e, (Figure 3). Also, the function B() is
determined by the shape of the cross section of the beam. Consequently,
the integral in Equation d may be regarded as a known function of ¢/re,.
For a given value of ¢/re,, this function may be determined by evaluating
the integral numerically. Accordingly, since ¢*/I is determined by the
shape of the cross section, the value of Mc/Ele, corresponding to any
value of ¢/re, may be calculated by Equation d. Hence, the curve of
¢/re, versus Mc/Ele, may be plotted.

The curve does not depend on the width of the cross section. For, if the
width b is changed by a constant factor, the terms 8 and I are also changed
by this factor, and therefore the right side of Equation d remains unchanged.
For example, the curve for circular cross sections is also valid for all elliptical

)

>
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Fi. 3. Dimensionless Stress-Strain Fic. 4. Simplified Stress-Strain Curve
Curve

cross sections, regardless of their sizes and their eccentricities, since any
ellipse may be obtained by widening or narrowing a circle by a constant
factor. Likewise, a single curve suffices for all rectangular cross sections,
regardless of their sizes and their aspect ratios. A discontinuity may ap-
pear in the curve, if the compression side of the beam buckles.

Frequently, the simple type of stress-strain curve shown in Figure 4 is
used in analyses of plastic deformation. Then,

et
%.—:f(fi): (;,_6;>€w ¢<h

rey

€uy §> 60
in which ¢ = re,/c.  Accordingly, Equation d yields
Mc 2411 & 1
o Tl M ars [Carar] (@

In view (?f Equation e, the curve of ¢/re, versus Mc/Ele, does not depend
on the yield point of the material, provided that the stress-strain curve is
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of the type shown m Figure 4  Likewise, the curve 1s Independent of the
width and the size of the cross section
For a rectangular cross section, 8 13 a constant  Consequently, the
integrals 1n Fquation e are easily evaluated The following equation 1s
then obtained
£ 1(_) Lot
e - 2 2\¢ re,
P P o

ey <1

’
re, re,

‘This equation s represented by Figure 5 This curve 1s valid for all ductile
beams of rectangular cross section, regardless of their sizes, their aspect
ratios and thetr yield stresses, provided that the stressstrain cunve 15 of
the type shown in Tigure 4 A simular curve may be plotted for all ductile
beams of elliptical cross section

If the deflections of a beam are not too large the curvature 1/ 1s closely
approumated by d%/dx?, m which x 15 the axial coordinate and 3 15 the

tioe  Herce,
_cdy ( AI:)
ey ey drt U @

Let L be the length of the beam or some spectfied fraction of the length
Introduce the dimensionless notations

:
smpr, oy
Then Equation g becomes
dh _ m)
dg 4 (Ele,, ®

For statically determinate beams Afc/Ele, 1s 2 known function of £
Dimensionless constants of the type PcL/EI appear m this function, m
which P denotes a load on the beam It 15 advisable to denote these con
stants by symbols, such as kand k;  For specified values of these constants,
Equation h may be integrated numencally with the aid of Figure 5, which
defines the function f(A¢/Ele,) Thus the deflection curve of a statically
determmate ductile beam 1s determined

Problems of redundant beams are closely related to the problem of
deflections  If a beam has several immovable supports the reactions are
determned by the condition that the defiections are zero at the supports
However, detailed solutions of problems of ductile redundant beams are
very tedious  Insome cases the redundancies are elminated if the ulumate
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bending moment is known to exist at certain sections. This matter has
been discussed by Van den Broek.!?

36

32

28

24

20

16

\Yielding
038 begins
0.4
0
(] 0.4 08 12 16
Mc
Ele,

FIG. 5. Dimensionless Graph Showing Relationship between Bending Moment and
Curvature for All Ductile Rectangular Beams with the Type of Stress-Strain Diagram
Shown in Figure 4

40. Di1MENSIONLESS PLOTTING OF TEST DATA FOR RIVETED JornTs*
The bearing stress s that a rivet exerts on a sheet is defined by the equa-

t?on, § = F/id, in which F is the load on the rivet, d is the diameter of the
rivet, and / is the thickness of the sheet. If the bearing stress becomes too

‘ J.A Van den Broek, Theory of Limit Design, John Wiley, New York, 1948,
This article is adapted from the material in Reference 11.
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great, the rivet shears or else the nivet hole 1s elongated by crushing of the
sheet behind the nvet  The latter phenomenon s known as a “crushing
fatlure I nivets lie near 2 free edge, a type of failure known as “tear
out” may occur Tl 15 not clearly disungwshable from erushing It
may be included 1n the category of crushing failures, if the distance ¢ from
the line of rivets to the edge of the sheet 13 regarded as one of the variables
that influences crushing The beanng stress that causes crushing falure
or shear failure depends also on the thickness { of the sheet, the diameter d
of the rivet, and on properties of the materials  Although various proper
ties of the materials may be influential, all of the charactenstic stresses bear

3

I
I -

S

{

8

Uttimate besnng stress, kipfin®

o

10 12
Ratio of vet diameter to-sheet thickness
Fio 6 Expenmental Chart Showing Ultimate Beanng Stress for 175-T Protrucing
Head Rivets in Unclad 24S-T Sheets
Crushing line apples for joints with edge distance equal to two rivet diameters By
courtesy of the Institute of Aeronautical Sciences (Reference 11}

a constant ratio to any one of them  C , the material prop
are designated by a single charactenistic stress—say the ultimate tensile
stress o, of the sheet matetial  Accordingly, the ultimate bearing stress s.
for the rivets 1s given by an equation of the form

s = flowhd €
Dimensonal analys:s yields

d
e u./(, ;) @
G Holback® 1s the first investigator who recognized the importance of
this type of rel h He plotted d data for 245 T and

A17S T aluminum alloy rivets at three diameters edge distance Feffer-

G Holback The Structural Analysis and S gificance of Rivet Shear Tests, Prog
Sop Exp Stress Anal Vol TIL no 1 1945
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man!! plotted similar data for 178-T rivets in 245-T sheet at two diameters
edge distance and obtained the graph shown in Figure 6. Note that the
graph consists of two lines: one - -

line for shear failures of the

rivets and one for crushing fail- W
ures of the sheet. Holback ob-
served that, in some instances,
these two lines are joined by a
short path that cuts off the sharp
corner. For a specified type of

rivet (flat-head, countersunk,
etc.), and for given materials, a

graph, such as Figure 6, fur- :I?f’
nishes complete information ___q}___Hi & H—]
concerning the ultimate shear- P
ing stresses and the ultimate H A
bearing stresses of rivets. ——-Cb-—d(}—dg}—@ ¥,

Let us now turn attention to "“"""”""““‘j ]
riveted joints. From the stand- d

point of stress analysis, lap
jointsand butt jointsare equiva-
lent, since a butt joint is merely
two lap joints in tandem—the
laps being formed with a com-
mon splice plate. Only single
lap joints will be considered in
the following. It may be as-

sumed that one of the plates is

somewhatthinnerthan theother. 4

The thicker plate may be re- Fy.7. Two-Row Tandem-Riveted Lap Joint
garded as a part of the test jig.

Although the rivet pattern is of no significance in the present discussion,
let us consider, for definiteness, the rivet pattern shown in Figure 7. Sup-
pose that the rivet spacing p, the rivet diameter d, and the sheet thickness ¢
may be varied independently. Let o; be the value of the sheet stress o
that causes failure of the joint. Then, letting o, (the ultimate tensile
stresss of the sheet material) be the characteristic stress to which other
material properties are referred, we have

i =f(°'u1 b d’ 1)

d d
0i=ouf (; 4 7) (b)

Dimensional analysis yields
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Instead of d/p, we may introduce the so called “nvet factor,”

b—nd

Ce=

m which 15 the width of the joint and # 15 the number of nvets on the front
row. This 1s the ratio of the cross sectional area of the sheet on the front
line of nvets to the cross-sectional area of the sheet at a section that does
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Ruwet factor €

Fo 8 Efiaencies of Tuo-Row Taadem Riveted 245-T Lap Jamts with Protruding
Head 175 T Rivets  d/t = 625

By courtesy of the Institute of Aeronautical Seiences (Reference 11)
not contain nivet holes  Also, 1t 15 conventent to introduce the jomt eff
ciency 7, defined by # = o5/cu  Then, Equation b becomes

»=1{cd) ©

Figure 815 a graph of Equation ¢ for two-row tandem 245 T alummnum
alloy jounts with 17S-T flat head rivets that all have the same diameter
{Digure 7) The theoretical graph for 1deal jomts consists of the two
dotted straight hnes The 45° line, 7 = C, corresponds to teanng of the
sheet on the front line of rivets  The nivet shear line and the crushing hne
both belong to the famly of straight hnes through the pomt € = 1, 4 = 0
These two Lines are determined by the elementary theory of nveted jomnts
The crushing ine depends only slightly on ratio d/f, but the rivet shear line
15 strongly dependent on this ratio (see Figure 6)

Since, n Iigure 8, the
shear Line Lies to the right of the crushing hine crushing precedes shear, and
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therefore shear is impossible. This is as it should be, for shearing of the
rivets is an indication of inefficient design. A properly designed joint
usually fails by a tear of the sheet on the front line of rivets. The theo-
retical lines of sheet tear, rivet shear, and crushing are useful guides for
plotting experimental data. They form a framework that indicates ap-
proximately where experimental points should fall.

A graph such as Figure 8 may be plotted for joints with any given rivet
pattern, since Equation c is valid, irrespective of the rivet pattern. Graphs
for aluminum-alloy joints with various rivet patterns are given in Refer-
ence 11.

41. SMALL DEFLECTIONS OF ELASTIC STRUCTURES

The stresses in the members of a statically determinate structure obvi-
ously do not depend on the elastic modulus. This statement remains true
for statically indeterminate structures, provided that all members have
the same elastic modulus, and provided that second-order effects, such as
beam-column action, are insignificant.

Since the elastic modulus does not affect the stresses in a slightly de-
flected elastic structure, the stress o at any specified point is determined by a
single length L, a single force F, and a single moment M, it being assumed
that the shape of the structure and the type of loading are preassigned.
The moment M may be disregarded, if we consider that all moments are
determined by the applied forces. Then the only dimensionally homo-
geneous equation among the variables is

_kF
-5

o (2)
in which % is 2 dimensionless constant that possibly depends on Poisson’s
ratio. This equation shows that the stress at any point of a slightly de-
flected elastic structure is proportional to the total load on the structure,

Now the deflections of an elastic structure are proportional to the strains,
and the strains, in turn, are proportional to the stresses. Consequently,
the preceding conclusion yields the following principle:

Slight deflections of an elastic structure are proportional to the lolal
load on the structure.

In other words, the first part of the load-deflection graph for an elastic
structure is a straight line.

In view of this principle, Equation b of Article 37 must take the more
special form,

"= (b)



92 PROBLEMS OF STRISS AND STRAIN

an which £ again 15 a dimensionless constant that may depend on Poisson’s
ratio

Equations a and b furnush the following model law for elastic structures
with small deflections

Kr Kr
K.=1 K, = =y K, = KiK. (18)
Note that these are with the ponding equations

for large deflections (Equation 17), but that they are less restrictve, since
the condition Ky = ApKy*1s ehmmated  According to Equation 18, the
load that 13 placed on a model of a structure 13 arbitrary

Exawpie 14  STRESSES IN AN ARCIED Dan

A 1/50 scale model of an arched dam s made of 2 cast resin that has about
the same Poisson ratio as concrete A partition 13 placed across the model
canyon Just upstream from the dam, and the space between the partition
and the dam 1s filled with mercury 1n order that bydrostatic pressure dis-
tributson 1s automatically obtained  Strains in the model are determuned by
electric strain gages

Since the depth of mercury at any point of the model 1s only 1/50 of the
depth of water at the homologous pomt of the prototype, and sice the
specific gravity of mercury 1s 136, the pressure scale factor 15 K, =
136/50 = 0272 Since the area scale factor 1s K;? = 1/2500, the force
scale factor 15
0272
2500

Kr=K;K:*= = 0000109

Hence, by Equation 18, K, = ﬁ =0272
K
Accordingly, the stresses 1n the model are 27 2 percent of the homologons
stresses m the prototype
Since the stress analysis of an arched dam consumes many thousands of
man hours, and since the employ of ques-
tionable accuracy, model studies have potential value in this field

ExamptE 15 STRESSES 1N AN AIRPORT PAVEMENT

In the analysis of nigid pavements, 1t 1s commonly assumed that the sub-
grde e e metered weradn e tonete Yal) eXpInTes B veriRsh
deflection that 13 proportional to the pressure that the slab imparts to 1t
The ratio  of the pressure to the deflection of the subgrade 1s presumed to
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be a characteristic constant, called the “subgrade modulus.” Evidently,
the dimension of the subgrade modulus is [FL~3].

If a wheel rests on a concrete slab, the lower side of the slab is placed in
tension, as a result of the bending. If the tensile stresses are too great, the
slab cracks. It is consequently important to calculate the maximum tensile
stress ¢ that results from a given wheel load. The primary variables that
determine ¢ are the subgrade modulus %, the elastic modulus E of the con-
crete, the thickness % of the concrete, the wheel load F, and the air pressure
# in the tire. Hence,

o =f(F, p, I, k, E)

Dimensional analysis yields

o= —;f(ﬂ'], ) 7r3)
2

2 E
in which =t LE =2

F kh E

If the load F is increased, the area of contact between the tire and the
pavement is increased. Accordingly, the type of loading changes with the
magnitude of the load. Under this condition, the stresses are not directly
proportional to the load. Rather, the spreading of the load causes the rate
of increase of ¢ with respect to F to decline as F increases. Consequently,
f is an increasing function of m. Also, f is an increasing function of =,
for, if the subgrade modulus £ is increased, the subgrade gives greater sup-
port to the pavement. Likewise, f is an increasing function of p, for, as the
air pressure in the tire is increased, the load becomes more concentrated.

These conditions are satisfied, if f is a function of the single variable

m ;) l.e.,
F _(Ep*h?
7= lz'*’f( EF? ) (@)

This simple form was derived by Westergaard" by means of principles of
elasticity theory. In view of Equation a, the results of Westergaard’s theory
can be presented by a single curve' with abscissa Ep*3/kF? and ordinate
ol*/F. Apparently, this fact has not been generally recognized, for leflgthy
tabulations of Westergaard’s results, showing the separate effects of the

¥H. M. Westergaard, Stresses in Concrete Pavements Computed by Theoretical
Analysis, Public Roads, Vol. 7, no. 2, p. 25, Apr. 1926.
. “Tl_ﬁs is also true of a revised theory that Westergaard developed to take account of
inclastic action of the subgrade. See H. M. Westergaard, Analytical Tools for Judging

Iécsulxt;;; Structural Tests of Concrete Pavements, Public Roads, Vol. 14, no. 10, p. 185,
cc. .
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varnables E, p, h, k, and I, have been prepared for use 1n practical pavement
analysis  The large amount of pavement rescarch that »s now m progress
will undoubtedly lead to new methods of pavement analysis, but it 15 to be
expected that the equations that are developed will have the form of Equa
tion 2, provided that the concept of a subgrade modulus 1s retained

42 Isteact

If 2 moving ngid body strikes a structure, the ;ndentation depends on the
size, the mass, and the veloaty of the body  On the other hand, the dumage
{bending or fracture) at some distance from the point of collision 15 prac
tically independent of the size of the body, although it naturally depends
on the mass of the body  In any case, the length scale factor for a model of
the inaident body may be assumed to be the same as the length scale factor
for a model of the structure  Then, In a class of geometnically simlar sys-
tems, the size of the structure and the size of the impinging body are both
determined by a charactenstic length /

The maximum stress ¢ at any pomt of the structure depends on the mass
m and the velocity V of the incident body, the charactenstic length L, the
elastic modulus E, Poisson s ratso », and the mass density p of the structure
According to Article 38 the constants E and » characterize the matenal,
even though ytelding or fracture occurs However this reasoning does
not take account of the effects of rate of loading  The yield stresses of
many materals are increased markedly of the loading 1s rapid  Although,
for expediency, we neglect the rate of strain, this simplification occasionally
introduces appreciable scale effects i model studies of impact Conse-
quently, the present analy sis 1s tnapphcable to very high speed phenomena,
such as penetration of armor plates by projectiles

Assummng that the significant varables are L, m 1, E, v p we obtam,
by dimensiona! analysts,

m
v, ;7__') @)

o= mV‘L"/(
If a model and its prototype are made of the same materials, Az = K, =
K, =1 Under these conditions, Equation a furmshes the following
model law.

El3
my?

K,=1, Ke=1, Kn=EKg (b)

Equation b signifies that the model and the prototype experience the
same stresses when they are struck by bod:es moving with the same speed V,
nuavidad. thas the masses af the incident. hodws aze propantienal. to the athes
of the lincar dimensions of the structures 1f damage 1s determied by
stress, the two systems then experience the same damage For example,
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if two model ships collide, they experience the same damage as full-sized
ships that collide at the same speed as the models, provided that the models
and the prototypes are made of the same materials, and provided that
geometric similarity is preserved with respect to all essential details. Geo-
metric similarity implies that the masses of the models vary as the cubes of
their linear dimensions.

As another example, suppose that a 1-oz stone, thrown with velocity V,
will crack a certain window. Then the preceding model law implies that an
8-0z stone, thrown with the same velocity V, is required to crack a window
whose width, height, and thickness are twice those of the first window. It
should be recalled, however, that effects of rate of strain on stress may cause
appreciable departures from results that are derived from Equation b.
Also, there may be scale effects that do not depend on the rapidity of load-
ing. The study of scale effects in impact tests of structures isa fruitful
field for experimental research.

43. SmALL FREE VIBRATIONS OF AN ELASTIC SYSTEM

It has been mentioned in Example 7 that a frictionless system may vibrate
in such a manner that the particles execute simple harmonic motions that
are in phase with each other. A vibration of this type is called a natural
mode. To each natural mode, there corresponds a definite frequency
(i.e. number of oscillations per second).

If attention is restricted to geometrically similar elastic systems, the
frequency n of any specified natural mode depends on a length L that
designates the size of the system, the mass density p of the material, Pois-
ssm’s ratio », and Young’s modulus E. The most general form of a dimen-
sionally homogeneous equation among these variables is

N
n=7 ; (a)

I which % is a constant that may depend on ». The resulting model law is

1 |Kg
K, =1, K,.=-—-\/——-
K, VK ®)

P

In some cases, the condition K, = 1 may be disregarded, since Poisson’s
ratio s irrelevant. If the model and the prototype are made of the same
material, Kg = K, = 1. Under these conditions, Equation b shows that
the frequency of any natural mode is inversely proportional to the linear

dimensions of the structure. For example, if the size of a tuning fork is
doubled, the pitch is halved.
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44 SwarL ForCED VIBRATIONS OF AN EIASTIC SysTEM

Suppose that the type of loading on an elastic structure 1s fixed, but that
the magmtude of the load varies penodically with time, m 2 prescnbed
manner Then the force I' that specifies the magnitude of the load on the
structure 15 a perodic function of time  Assurmung the type of loading 2nd
the shape of the cycle of the force I" to be given, we may specify the excaiting
forces completely by their frequency » and by a constant force Fo (e g the
maximum value of the force F)

The structure responds to the periodic load by vibrating  Eventually
the effects of the itil cond are d, and the sub
vibration 15 periodic  The amplitude 4 of the osallation of any spcclﬁed
particle of the structure 18 then a function of the vanables Fy, #, L, p, E, and
v, 1n which the notations are the same as 1n the preceding article  Dimen

stonal analysis now yields
f E ol \/;) @

If the deflections are small, they are proportional to the apphed load Fy
as 1n the case of statical loading  Consequently, in the Linear theory of
vibrations, the term Fo/EL? drops out of Equation a  Accordingly, the
equation takes the sumpler form,

Fy \F
a=i /(..L 2 ®
1In general, the form of Equation b 1s such that A becomes infinite for a
certain value of This value of # 1s known as the ‘resenance frequency *
The model law that 1s derived from Equation bis
Kr,
KgKyp

K KK, = Ky, Ku= ©
If the model and the prototype are made of the same matenal, Kz =
K,=1 Then, Equatwon ¢ reduces to

Koo Rn= Kk @

If the amplitudes of vibration of the model and the prototype are rela

tively the same, Ka = K In this case, Equation d shows that the fre

quencyrof the exetang force showld vary inversaly 2s the suze of she structvre

and that the magnitude of the exciting force should vary as the square of
the size of the structure
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For example, suppose that the lengths in a model of 2 steel bridge are one
tenth of the corresponding lengths in the protofype and that the model is
also made of steel. When a shaking force with a frequency of 30 cycles per
second and 2 maximum value of 20 Ib is applied to the model, certain vibra-
tions are developed. To produce vibrations with corresponding amplitudes
in the prototype, the frequency of the shaking force must be 3 cycles per
second, and the maximum value of the shaking force must be 2000 1b.

PrOBLEMS

1. Assuming that the stresses in a bridge are entirely due to the dead weight of the
bridge, prove that, in a class of geometrically similar bridges, the larger bridges are more
highly stressed. (Rayleigh)

2. A half-scale model of a cantilever plate-girder beam fails by buckling of the com-
pression flange when the load is 40,000 1b. At what load will the prototype fail? How
much will the prototype be deflected at the ultimate load if the maximum deflection of the
model is 0.60 in.?

3. A bending moment of 5000 Ib in. is required to bend a cylindrical steel bar into a
U-shape.  Another bar, made of the same steel as the first bar, has a diameter 50 percent
greater than the first bar. What bending moment is required to bend the second bar
into a U-shape?

4. Two identical steel balls are pressed together with sufficient force to cause a slight
permanent flat spot on each ball. How does the force vary with the diameter of the balls?

5. Assuming that the stress-strain curve is of the form shown in Figure 4, plot to
scale the graph of Figure 5 for beams of elliptical cross section.

6. The ultimate shearing stress for flat-head rivets is 34,000 b/in.? (based on nominal
rivet diameter), and the ultimate bearing stress of the sheet material for e/d = 2 is as-
sumed to have the constant value, 100,000 1b/in.2. Plot the graph of Figure 6 for this case.

7. The ratio of the ultimate bearing stress of rivets to the ultimate tensile stress of
the sheet is 1.70. Plot the theoretical sheet-tear line and the theoretical crushing line
for lap joints with three identical rows of rivets (see Figure 8). What is the ideal maxi-
mum joint efficiency for this case? Neglect stress concentration.

8. The ratio of the ultimate shearing stress of rivets to the ultimate tensile stress of
the sheet is 0.50. The ratio of the rivet diameter to the sheet thickness is 2.50. Plot
}hc theoretical sheet-tear line and the theoretical rivet-shear line for joints with two
ldt.:ntical rows of rivets (see Figure 8). What is the ideal maximum joint efficiency for
this case? Neglect stress concentration.

. 9. What is the ideal maximum efficiency for single-row lap joints, if the ratio of the
ultimate bearing stress to the ultimate tensile stress of the sheet is 1.50?7 Neglect stress
concentration.

10. Two identical steel balls experience a direct collision. Do the resulting stresses
depend on the sizes of the balls? Explain.

. 11. The natural frequency of a steel tuning fork is 200 vibrations per second. What

is the natural frequency of a 1/3 scale aluminum-alloy model of the tuning fork? For

zteel. # =15 slug/ft?, and E = 30,000,000 Ib/in.%. For aluminum alloy, p = 5.4 slug/fts
nd E = 10,500,000 Ib/in.2.

12. Derive the model law for nonlinear forced vibrations of an elastic structure (see

E_quat.ion a, Article 44). If Kg =14, K, = 14, and K, = 14, what are the values of
Ka Kry, and K2
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13 1f a beetle and a turtle are geometrically sumtlar, which can fall from a greater
height without 1njury? Explan your answer with and without the consideration of air
resistance

14 The stramn energy of an elastic plate, per umit area of the middle plane 15 expressed
10 terms of the deflection of the muddle plane  One part (membrane energy ) 18 & homo-
geneous quadratic function of first derivatives of the deflection with respect to Cartesan
coordinates in the muddle plane  Another part (bending energy) 1$ 2 homogeneous quad
ratic function of second derivatives of the deflection and a third part (shear energy)
13 3 homogeneous quadratic function of third denivatives of the deflection  How do these
energy terms vary with Young s modulus? How do they vary with the thickness of the
plate?

15 Thin webbed beams used in aucraft are frequently stiffened by transverse ndges
(beads) that are pressed 1nto the webs The web shearing stress r that will cripple the
beads depends on the depth k of the web the spac ng b between beads the depth d of a
bead, the thickness £ of the web  the yield stress o, of the matenial, and Y oung s modulus £
Make 2 dimensional analysts of the problem



CHAPTER 7

Some Applications of Dimensional Analysis
in Fluid Mechanics

Dimensional analysis has played an important part in modern develop-
ments of fluid mechanics, particularly in investigations of turbulent flow.
Some topics from the theory and practice of fluid mechanics, in which the
reasoning is wholly or partly based on dimensional considerations, are
presented in this chapter.

45, VErociry DISTRIBUTION OF TURBULENT FLOW IN THE VICINITY OF
A SorLmp WaLL

Consider turbulent flow, in which the average stream lines are straight
and parallel. This type of flow is exemplified by wind blowing over the
plains, or by flow in a long straight pipe. The average velocity « at a
distance y from the boundary depends on the roughness height e of the
boundary, a length L that specifies the size of the system (e.g. the diameter
of a pipe), the kinematic viscosity » of the fluid, the mass density p of the
fluid, and the shearing stress ro that the fluid exerts on the boundary.
Hence, there is a relationship of the type

fCu, v, e, L, », p, 70) =0

Evidently, the ratios of lengths y/e and y/L are dimensionless products.
Bearing this fact in mind, we may, for convenience, eliminate ¢ and L from
the dimensional matrix. Then the dimensional matrix is

i 2 3 4 5

w oy v P To
M 00 0 1 1
L 11 2 -3 -1
T |{-1 0 —1 0 -2

The fallk of this matrix is three. Consequently, the five variables in the
matrix furnish two independent dimensionless products. Proceeding as in
99
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previous examples, we obtain the dimensionless products,
u \/Z and 2 \/5
7o » Vo

The ratio v/ 7o/p has the dimension of a veloaity  In the hiterature on fud
mechamics, 1t 15 called the friction velocity, and 1t 1s denoted by o*  Accord
1ngly, a complete set of dimensionless products i1s

o9y 2

L v e L
The product yv*/v s formally a Reynolds number This product 1
Lnown as the friction-distance parameter

It now follows from Buchingham’s theorem,

22 ®

If the boundary 15 an infirute plane, there 1s no length L that characterizes
the system, since the concept of * size of the system” does not enter mto
consideration  Consequently, m this case, the term y/L 1s dropped from
Equation 19, 1 e, the equation takes the simpler form

s v

1-1(22) 9
In any case, Equation 19 1s vahd for the region of high veloaity gradient
near a wall since, mn this region, the ratio /L 1s so small that it may be
neglected  Consequently, in all cases of uniform flow in a cylindrical or
prsmatic conduit, the veloaity distribution near the wall 1s given by an
equation of the form of Equation 19

The velocity that ch vamsh at a smooth
boundary Consequently very close to the boundary, the shearing stresses
are primarily due to viscous action  The region 1 which this condition
prevails 1s called the Jaminar sublayer  Although there are turbulent fuctu-
ations at any finite distance from the wall, 1t 1s useful to conceive a defimte
thickness ¢ of the lamimar sublayer Since ¢ depends on o, g, and ¥, We
obtain, by d: 1 analys:s, the rel h

o
all constant (20}

Accordingly, the thickness of the laminar sublayer corresponds to a con-
stant value of the friction distance parameter The value of the constant
18 rather indefinite, since 1t depends on an arbitrary designation of the thick
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ness of the laminar sublayer. According to the usual viewpoint, surface
roughness has no effect on the flow if the surface irregularities are immersed
in the laminar sublayer:i.e.if ¢ < e. If this condition is adopted as a defini-
tion, the constant in Equation 20 is about 4.0, since Nikuradse!® has shown
by experiment that a surface behaves as though it were ideally smooth,
if ev*/v < 4, On the other hand, Nikuradse has shown that the viscosity
has no perceptible influence on the velocity distribution near a wall, if the
wall is so rough that ev*/y > 80.

In the case of smooth surfaces (ev*/v < 4), the term y/e may be dropped
from Equation 19’. Consequently, the velocity distribution near a smooth
surface is determined by an equation of the form,

== f(—y1> (19)
v 14

A complete formula for the function f is not known. However, Prandtl!
deduced from his mixing-length hypothesis the following formula, which

agrees closely with Nikuradse’s experimental results for the range y2*/v >
50;

*
Y = 575 logl 2 + 5.5 1)
v 14

This equation was also derived by von K4rmén by another method (Article
46).

Since, in the laminar sublayer, the shearing stress is primarily due to
viscosity, Newton’s equation for the shear is approximately correct for this
region; i.e.,

The shearing stress throughout the laminar sublayer is practically equal to
the wall shear 5. Accordingly, the preceding equation may be written:

d
@y =r
Integration yields
w oy
- = (22}

'.l'his equation shows that the velocity distribution in the laminar sublayer
is linear,

It is sometimes convenient to define the thickness € of the laminar sub-

L. Prandt], Stromungslehre, Ch. 111, Par. 5, F. Vieweg & Sohn, Braunschweig, 1949,
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layer to be the value of y for which Equations 21 and 22 yield the same value
of ufv* According to this defimtion, e*/» = 118  Tor values of the
friction-distance parameter greater than 118, the Prandt! von Kérmin
Equation 21 1s reasonably accurate, whereas Equation 22 may be used for
values of the fniction-distance parameter less than 118 Figure 9 15 2
graph of Equations 21 and 22

6
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In the case of 2 very rough surface (er*/v > 80) the viscosity term
39*/v may be dropped from Equation 19 Prandtl and von Karmin
denved for tus case, the equation

3
:—, =57 log,u§+ 8s (23)

This formula agrees with Nikuradse’s esperimental results for all values
of y/egreater than 10

46 Vov Karuan’s THEORY OF THL Smeak N A TuRBULENT VELOCITY
FELp

In a turbulent velooity field the shearing stresses are usually several
bundred fimes greater than n a comparable Jatmar flow  The great m
crease of shearing stress that accomparues turbulence 1s due to the momen
tum mterchange caused by lateral fluctuations of veloaty ~ Viscosity plays
only a small part 1n this phenomenon.

Von Karman assumed that the shearing stresses at a pomnt 1n a turbulent
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velocity field are determined by the density of the fluid and by the dis-
tribution of mean velocity in the neighborhood of the point. In a uni-
directional flow, defined by # = u(y), the distribution of velocity in the
neighborhood of a point is determined by derivatives of « with respect to y.
Accordingly, if only the first and second derivatives are significant, the
relationship proposed by von Kérmén is of the form,

T= f(p, Uy, 'uyl/)

in which , and #,, are abbreviations for du/dy and d*:¢/dy*. This rela-
tionship admits only one dimensionally homogeneous form; namely,

pr2t,t

(24)

T Uy
in which « is a dimensionless constant. If the shear due to viscosity is
relatively small, it may be taken into account by adding the Newtonian
friction term to Equation 24. Then,

pxiu,t
2

T = ptty 4 (25)

Uyy
This is von Kdrmdn’s equation. Experiments indicate! that the value of
is about 0.40.

If 7 is a known function of y, Equation 25 may be integrated. The
simplest case is that in which the plane y = 0 is a smooth boundary. Then,
since there is a negligible pressure gradient, the shearing stress 7 is con-
stant. This follows from the equilibrium equations. Von Kérmén as-
sumed that the term uu, in Equation 25 has a negligible influence on the
flow in the region outside of the laminar sublayer. Consequently, he dis-
carded this term. However, the integral of the equation is then not dimen-
sionally homogeneous, unless the viscosity is reintroduced in one of the
constants of integration, since Equation 19" is the only dimensionally
homogeneous form for the solution. A procedure that is mathematically
more satisfactory is to leave the viscosity term in Equation 25 and to solve
the differential equation subject to the boundary conditions 2% = 0 and
7= pu, for y = 0. However, the resulting velocity distribution does not
agree with experimental results. There are several possible explanations
fqr the discrepancy. In the first place, Equation 25 is not the most general
dimensionally homogeneous equation that expresses  as a function of the
four variables p, p, 1y, and 1,,. In the second place, higher derivatives of
are probably significant. However, the influence of higher derivatives,
and the perturbations due to viscosity effects, other than those indicated

. Y1 Rouse, Fluid Mechanics for Hydraulic Engincers, Ch. XTI, McGraw-Hill, New
York, 1938. !
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by Equation 25, are both small 1z the region outside of the laminar sub
layer Since 1t 1s recogmzed that Equation 25 1s acceptable only for the
region outside of the lamunar sublayer, the constants of integration may
not be determmed by the boundary conditions Consequently, these
constants must be obtained empincally
‘The details of the calculation are now easily performed  Equation 2513
approxtmated by Equation 24, which may be written,
R
By
The first integration yields v* = xyu,, 1n which the constant of integration
15 set equal to zero  The second mntegration yrelds

*lny=wm+C @)

To obtain a dimensionally homogeneous form, set C = C’ ~ ¢* In (v*/»}
‘Then,

.
el =t
v

Ths agrees with Equation 21, 1f x = 040and ¢’ = —5 Sa*

Equation a also furnishes the solution for very rough walls (ev*/v > 80)
In this case, the viscosity has no effect but the roughness height ¢ appears
m the equation  To obtain a dimensionally homogeneous equation, set
C=C"+1*Ine Then Equation a takes the fallowing form

mn§= w4 C

‘This agrees with Equation 23, if x == 040 and &’ = —8 5xo*

For flow 1n a pipe, 7 15 a linear function of y  Von Ké4rmén ntegrated
Equation 24 for this case Prandtl has pointed out, however, that the
linear variation of 7 1n a pipe has little mBuence on the veloaity profile,
since the region of high veloaity gradient 1s near the wall  Actually,
Equations 21 and 23 are even more accurate than von Kérmén’s solution
for the entire veloaty profile of flow tn a pipe  However, Equations 21
and 23 are maccurate 1f Reynolds’ number 15 1 the range 2000 to 100,000,
since viscosity exerts a strong effect i this range Here, only empirical
relationships are known

Another form of the equation that 15 applicable to uniform flow 1 a pipe
1s obtawned by setting C = €’ 4 ¢* In r n Equation a, 1n whuch r 15 the
radwus of the pipe  Then Equation a becomes

v.f*l.n%=xu+c’ ®
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Now, for y = 7, %4 = tmax. Consequently, Equation b yields

ax 1
Towe 28 o Zin (26)
v £ 9y
This equation is equally valid for rough pipes and for smooth pipes. It
may be seen from Equation 26 that the shape of the central part of the
velocity profile does not depend directly on the wall roughness nor on the

v
/”’
Limit of the 7

boundary layer -

PR il
v~ 8
\\\§
——= -~
\\
AN
x ~
\\\-
Laminar boundary layer Turbulent boundary layer

Flow in the Boundaty Layer
Fic. 10. Flow in the Boundary Layer

average velocity in the pipe, but only on the wall shearing stress 7o. Accord-
Ing to Equation 26, there is a slight cusp at the center of the velocity profile.
This discrepancy appears also in von K4rman’s solution.

47. BouNpARY-LAYER THEORY

Ii a body is immersed in a stream of fluid, the drag force on the body is
caused partly by differences of pressure on the front and the rear parts of
the l?ody, and partly by shearing stresses on the surface of the body. The
portion of the drag force that results from the shearing stresses is called
“sl.{m-friction drag.” If a very thin plate is placed edgewise to a stream of
fluid, .the drag is entirely attributable to skin friction. ‘The nature of the
ﬂ?W, In this case, is indicated by Figure 10. The plate causes very little
disturbance of the velocity field in the region ahead of its leading edge.
Howevef, near the surface of the plate, there is a high velocity gradient.
The region in which an appreciable velocity gradient exists is called the
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boundary layer Ewidently, the thickness § of the boundary layer s an
creasing function of the coordmnate x (Figure 10)
‘The shearing stress 7q on the surface of the plate may be represented m

the form, o= depl? @
The friction coefficient ¢y 1s evidently dimensionless Frequently, the

average friction coefficient for the interval (0, ) 1s used This coefficient
1s naturally defined by the equation,

1
¢ = ;j:c, dr ()

The coefficient C; may be dicectly determuned by experiment, whereas the
coefficient ¢, cannot be directly measured The drag force on one side of
the plate 1a the interval (0 x)1s fora umt width

F o= 3CpVix

The boundary fayer thickness and the friction coefficients are functions
of the coordimate x the free stream velonty ¥V the Yanematic viscosity »
and the roughness height ¢ of the surface  Dimensional analys:s yields

§=af (??) ©
a=n("2Y) @
Cr=ti (5 ) ©

The dimenstonless product Vix/v 1s Reynolds number It 15 denoted by
R, The dimensionless product R; = ¥8/» 15 also employed 1n the hitera

ture on the boundary layer
At some distance downstream from the Jeading edge of the plate the
flow m the boundary layer undergoes a transition from lammar motion to
turbulence  Reasomng similar to that in Example 6 shows that the transi
tion oceurs at a critical value of Reynolds number However the critical
Reynolds number 1s found to be strongly mfluenced by surface roughness
and by conditions at the leading edge of the plate Usually the transt
tion occurs mn the range 10° < R, < 10° In terms of R; this range is

roughly 1600 < R, < 5000
The velocity distnibution i the lammar boundary layer does not depend
appreciably on the density since the nertua forces are shght  Accordingly,

dimenstonal analysis yields
« () ®
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in which # is the velocity at a distance y from the boundary. Note that
the viscosity is excluded from this equation on dimensional grounds. Equa-
tion f means that the lines y = k3 (i.e., lines at constant percentages of the
depth of the boundary layer) are lines of constant velocity.

Von Kdrmén® employed Equation f in conjunction with the momentum
equation,

F = p£61¢(lf — ) dy (g)

in which F is the drag force (per unit width) on one side of the plate in the
interval (0, x). This equation is derived in most books on fluid mechanics.
Since dF/dx = 7o, Equation g yields

d
('D*)2 = E-/O‘ u(V - H) dy (h)
With Equation f, this yields
dé
0*) = aV?— (k)
dx

in which « is a constant.

Also, the shearing stress at the boundary is given by 7o = u(du/dy)e.
With Equation f, this yields

vl
@) =— (m)
)

in which 8 is a constant. Equations k and m provide a simple differential
equation for 8. The solution is

2oy
o= ®

The constants « and 8 may be obtained from the assumption that the
velocity distribution in the boundary layer is parabolic, as for flow between
parallel plane walls. For greater accuracy, von K4rman recommended a
velocity profile in the form of a cubic parabola. However, Blasius’ calcula-
tion of these constants, based on the differential equations of viscous flow,

is more rigorous. With Blasius’ constants, Equations n and p may be
expressed

Equations m and n yield

8= 5.2R.7* ¢s = 0.664R, ™% (@

B T. von Kérmén, Turbulence and Skin Friction, J. Aeronant. Sci., Vol. 1, no. 1, 1934.
Sftc also: Mechanische Ahnlichkeit und Turbulenz, 3d Inter. Congr. Applied Mechanics,
Vol. 1, p. 84, Stockholm, 1930,
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Von Kérmén assumed that the velocity distnbution in the turbulent
boundary layer over a smooth plate 1s given by Equation 21 Smeeu = ¥
for y = 8, Equation 21 yelds

vV o1 &
Iie ;ln 5 +55 (0]

If the veloaity distnbution of Figure 9 1s substituted 1n the momentum
equation h, the may be perf d The dary-layer thick
ness § may be ehmmated from the integral by Equationr  Thus, a dufferen-

5

4
g
&2 =
3 = -

1 - =

[}

1 B o
Log,o Ry

Fic 11 Fnction Coefficient for Smooth Plates

t1al equation 15 obtamned for the frction coefficient ¢, Von Kérmén 1n
tegrated* this equation  For large Reynolds numbers, his solution 1s ap-

proxumated by
N2
x
s

Equation s 1s cumbersome to use, since 1t 13 not an expheit equation for ¢y
Schlichting proposed the following explicit formula for the average fnction
coefficient C; of the turbulent boundary layer

€y = 0455(loguR.) % ®

=In R} + 115 O]

In view of Equation b, the local friction coefficient ¢y 1s denved from the
average friction coefficient C; by the equation,

é d
};(tC/) =¢ or IR:(RJ:/) =¢r

* Instead of Figure 9, von Kérmén used the veloaty distribution that 1s dertved from
Equation 24 by assumung a Linear d stnbution of shearing stress.
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Hence, by Equation t,
¢s = 0.455(logioRz)"*%® — 0.510(log;oR.) > (w)

Equation u agrees closely with von Kérmdin’s result. It also agrees
closely with experimental measurements of the boundary layer at large
Reynolds numbers. Figure 11 is a graph of the friction coefficient ¢y, based
on Equations q and u. This graph applies only for surfaces that are prac-
tically smooth. When ¢; is known, § may be obtained from Equation r.

The foregoing theory is used for calculating the skin-frictional resistances
of boats and airplanes, since, insofar as skin friction is concerned, the surfaces
of these bodies may usually be approximated by flat plates. Equation t is
more convenient to apply than Figure 11, since it determines the total skin-
friction drag without integration. However, Equation t is inapplicable if
a large part of the leading portion of the boundary layer is laminar. Usu-
ally, the Reynolds numbers of full-scale boat hulls are sufficiently large to
permit the use of Equation t, but this equation is frequently inaccurate for
small-scale models.

48. UnirorM FrLow 1IN A FLuME or A CoNDUIT

The “wetted perimeter” of the cross section of a stream is that part of the
perimeter that is contiguous with the walls. The size of the cross section of
a stream in a flume or in a closed conduit is frequently designated by the
hydraulic radius R, which is defined to be the ratio of the cross-sectional
area of the stream to the wetted perimeter. In the literature on hydraulics,
criticisms have been directed at the frequent assumption that the rate of
flow in a flume is determined by the hydraulic radius alone, without regard
for the shape of the cross section. However, there can be no logical objec-
tion to the specifying of the size of the cross section of a stream by the
hydraulic radius, if the shape of the cross section is recognized to have an
effect. A difficulty in the testing of open channels arises because the shape
of the cross section of a stream is generally changed when the depth of the
stream is changed. Flumes of triangular cross section are an exception to
this remark.

If the flow in a conduit (either open or closed) is uniform, Bernoulli’s
e_quation, in conjunction with the Darcy formula for the energy loss (Equa-
tion 3), yields

_Lr
=R % 27
n which s is the loss of piezometric head per unit length (i.e. the slope of the
hydraulic grade line). For an open channel, s is identical to the bottom
slope. 'I.‘he term f is the friction factor, defined in Example 5.
Equation 27 shows that the mean velocity V in a prismatic or cylindrical
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conduit depends on the hydraube radiss R, the kinematic viscosity v, the
roughness height e, the product gs, and the shape of the cross section, 1 e,
V = f(gs, R, », ¢, shape)

By dimenstonal analysis, this equation 1s reduced to the following form;
R
V= ViR F (; VRS, %, shnpe) (28)

11 Vg T 1s dentified as the Chézy coefficient C, Equation 28 1s the Chézy
formula, ¥ = € v/Rs, which 15 the basis of much of the engineening theory
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Fic 12 Inversion of Stanton Diagram

of flow 1n open channels  Several empirical formulas for the coefficient C
are m general use However, none of these formulas 15 dimensionally
homogeneous  Experimental charting of the function I 15 much needed

Tor pipes, the function F may be obtaned by inversion of the Stanton
diagram  The procedure 15 as follows

Choose a value of Reynolds’ number (R = 4VR/v), and ohtain the cor
respondng value of f from the Stanton diagram (Figure 2) By Equations
27and 28, b = V/8/f Hence, } may be computed Also, the dimension
less product (R/v) v/gRs, on which ¥ depends, 15 obtained by the wentity,

VR Y VR
T
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Thus, from the Stanton diagram, a chart with ordinate F and abscissa

R/v\/gi.; is obtained. The parameter of the family of curves is e/R.
Figure 12 is the chart that is derived from Figure 2.

The experience of hydraulicists indicates that the cross-sectional shape
of a flume has little effect on the flow if the shearing stress is nearly con-
stant on the wetted perimeter. Consequently, Figure 12 may be expected‘
to apply for open channels with simple cross-sectional shapes. Also,
Figure 12 is more convenient than the Stanton diagram for solving pipe-
line problems in which the gradient of piezometric head is known and the
velocity is to be determined.

Experiments on open channels at the University of Illinois indicate that,
at high slopes, the dimensionless variable s exerts an influence that is inde-
pendent of the product gs. Probably wave action accounts for this dis-
crepancy, since a small amount of wave action may dissipate as much
energy as the wall friction. If waves exist, the flow is not truly uniform.

49. RuN-0FF Froym A WATERSHED

While in the employ of the Division of Waterways of the Illinois Depart-
ment of Public Works and Buildings, Mr. Cevdet A. Erzen made a useful
application of dimensional analysis to a problem of hydrology. The author
is indebted to Mr. Erzen and to the Illinois Division of Waterways for the
use of this example.

The watershed of a river is the territory that is drained by the river. If
a rain falls on a watershed, the river rises. However, the maximum stage
of the river does not occur immediately after the rain. The discharge of
the river may continue to increase for a number of days after the rainfall,
since time is required for the water to drain from the watershed into the
river. The problem then arises of tracing the history of water after it falls
as rain. At a time / after the rainfall, an amount Q (it3/sec) of the rain-
water is being discharged by the river. Specifically, the problem is to
express Q as a function of . The effect of the duration of the rainstorm
on the discharge Q will be neglected. Mathematically, this is tantamount
to the assumption that all the rain falls at the initial instant, f = 0. The
amount of rainfall H is usually expressed as “feet of rain.” This is the
t((;ta)l rainfall on the watershed (ft®) divided by the area of the watershed

t).

The run-off Q from a watershed naturally depends on the topography, the
Ve.getation, the nature of the soil, and the initial percent of saturation of the
soil. Tt is also strongly influenced by snow and ice. Since it is difficult to
define these variables, attention must be restricted to watersheds that are
physically similar. Then the most important variables that influence the
run-off Q at the time / are the amount of rainfall H, the area of the water-
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shed A, the acceleration of gravity g the mass density p of water, and the
kinematic viscosity » of water  The viscosity » depends on the temperature
‘The relationsh:p among the vanables 1s indicated by

J@ 6 4,H,80v)=0
It 1s impossible to form a dimensionless product that contamns p, since p 1s

the only varable that contains the dimension of mass Therefore, o
actually does not enter the problem

* FITITT L

* Rowell watershed A =334s5qmi
© Mont cello watershed A = 550 sq me
o o Kncad watershed A =510sqm

5
a\*rx
2 10 12
Lz
Tois
Fio 13 Dumensionless Graph Showing Run offs from Three Watersheds 1 Hlinois

By courtesy of the Ill nois Davasion of Waterways

Dimensional analysis of the above equation yields

It 15 known from observation that { 1s approximately proportional to H
Therefore, Equation a must take the more special form

Q = g AN Hfg AN, vy N ®)
For brevity, let us set

s gtAN, g =g, k-
Then Equation b becomes
y=Jk) ©

The foregomng argument does not take evaporation mto account It
may be possible to include this effect n the dimensional analysis of the
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problem, but, for simplicity, evaporation has been disregarded. Accord-
ingly, all of the rainwater is considered to run off in the river. Hence,

fo Qdi=AH

In terms of the variables x and ¥, this equation is expressed,

fomydx=1 )

Consequently, if a curve is plotted with ordinate y and abscissa «, the area
under the curve is unity. In practice, the upper limit of the integral may
be replaced by a reasonable finite value.

The graph of Equation c should be expected to be approximately the same
for all watersheds that are geologically similar and that have roughly the
same shape. Data of the Illinois Division of Waterways tend to confirm
this conjecture. Figure 13 shows data from three watersheds in the state
of Illinois. Note that all points fall practically on the same curve. Al-
though different curves should be expected for different values of the
parameter k, the data are not extensive enough to exhibit this effect.

50. CENTRIFUGAL PUMPS

In a class of geometrically similar centrifugal pumps, a pump is specified
by a single length—say, the diameter D of the impeller. A manufacturer
usually builds several classes of centrifugal pumps, such that pumps in the
same class are approximately geometrically similar. The purchaser of a
pump specifies the head and the rate of flow Q at which the pump is to oper-
ate. The head may be defined as the difference P = (p2+ pgZs:) —
(#1+ pgZy), in which the subscripts 1 and 2 refer to the suction side and the
discharge side of the pump. After the type of pump is selected, the size
of the pump to furnish the specified values of P and Q is determined by an
equation of the form,

D = f(Q, P, p, n)

in which # is the angular speed (rev/sec) of the shaft. Viscosity ordinarily
exerts only a secondary effect, and it is consequently not included in this
discussion. Dimensional analysis of the above equation yields

The dimensionless product 2 V(Q%3/P3 is known as specific speed.
The speed of a pump is usually determined by the speeds of available
motors. Consequently, the purchaser’s specifications largely determine
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the specific speed of 2 pump  The diameter D of the ympeller (1e the size
of the pump) s then deterrmned by Equation 2 The manufacturer's
expenmental data provide a graph of the function fi

The efficiency » of pumps of a given class 1s also a function of speaific

speed, 1¢,
o
nef (n N QI;‘,’—) ®)

If the class of pumps 1s appropnately selected, the speaific speed at which
the pump 1s to operate is near the specific speed for maximum efficiency

Casitation (1e boiling caused by low pressure) 1s frequently encountered
mn hydrauhc machines  Cavitation naturally depends on the pressure on
the suction side of the pump  This, m turn, 1 determined by the static
pressute at the shaft level, 1e, p.— pgh, in which pa 15 the atmospheric
pressure and J 15 the height of the center ne of the pump above the
water level 1n the sump  Since only the excess of pressure above the
vapor pressure p, of the liquid 1s signuficant, the pressure that 1s directly
related to cavitation 15 p = po — po — pgh

The rotational speed #. at which a particular pump will cavatate is given
by an equation of the form,

ne=flp, B, p D)

Dimensional analy sis of this equation yelds

ne= \/% i(2) ©

The ratio $/P 15 called the Thoma number ” When the function f(¢/P)
1s known for a class of pumps Equation ¢ determmes wshether or not 2
certain pump wil} cavitate under specified operating conditrons  Cavita
tion mpais efficiency and 1t 1s injunious to the machine

In the foregoing the perf e of pumps has
been considered from the viewpomt of the engineer who must choose a
pump to fulfill specified conditions  From another viewpamt, P may be
considered 1o be a function of the four vanables O n, B, g, for a certamn
class of pumps, 1€,

Py m Do)
By dimensional analysis this equation 15 reduced to the form,
P 0
= - )
2-1(Z) @
E 0
Lakewrse e (Tzr) (@
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and 1=5(%) ®

Here E denotes the power (ft 1b/sec) required to drive the pump. The
dimensionless product P/ (pnD?) is a form of the pressure coefficient. The
dimensionless product E/(pn*D?) is known as the ‘“power coefficient.”

The function f; cannot be a constant, sincen = 0if Q = 0. Consequently,
Equation f shows that, if 5 is constant, the ratio Q/#D? is constant; ie.,
Q = KnD?, in which K is a constant. This conclusion may be expressed
as follows:

When a centrifugal pump operates at constant efficiency, the rate of
discharge Q is proportional to the speed #», and proportional to the cube
of the diameter of the impeller. The discharge Q does not depend on
the density of the liquid.

Since fi1(K) is constant, Equation d now yields the following principle:

When a centrifugal pump operates at constant efficiency, the head P
is proportional to the density of the liquid, proportional to the square
of the rotational speed, and proportional to the square of the diameter
of the impeller.

Finally, since f,(K) is constant, Equation e yields the principle:

When a centrifugal pump operates at constant efficiency, the shaft
horsepower (or the water horsepower) is proportional to the density of
the liquid, proportional to the cube of the rotational speed, and pro-
portional to the fifth power of the diameter of the impeller.

Since the maximum efficiency of a pump is approximately independent of
py n, and D, the preceding principles are valid for the case in which the
pumps are operated at maximum efficiency.

The equations show that the power coefficient, the pressure coefficient,
ax.1d the efficiency of a centrifugal pump may be plotted as functions of the
dimensionless variable O/nD% \VWhen test data are given in this form, it is
unnecessary to specify the speed of rotation, the density of the liquid, or
the size of the pump. Of course, the data are valid only for pumps that are
geometrically similar.

51. CENTRIFUGAL COMPRESSORS

The flow of a gas is influenced by the ratio of specific heats Cy/Cy. This
constant is approximately 1.40 for diatomic gases. In any case, the ratio
of specific heats may be disregarded if attention is restricted to a single gas.
Also, the acceleration of gravity does not ordinarily appear in formulas
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dealing with the flow of gases, since the weight of a gas 1s usually neglgible
compared to the other forces that act on st

In view of these remarks, the pressure p on the discharge side of a centnif
ugal compressor 1s determined by the pressure po on the tnlet side, the mass
density po of air on the et side, the mass # of air that flows through the
machune per second, the speed # (rev/sec) of the machune, and the dameter
D of the rotor  The spectfication of a machine by the diameter D imples
that a class of geometnically similar machines 15 considered  If the ma-
chines are nater Jacketed, the calculation of performance s partly 2 problem
of heat transfer, and a number of other variables must be considered
Restricting attention to the stmpler case, we have

? = f(po, po, m, 1, D)

Dimenstonal analyss of this equation yields

= i fo

P s (ﬂD‘pa ! n’D’ao) @
Now, mfpe = §, the vebume of 2z at indet condions that fons thavugh the
machine per second  Also the speed of sound at mlet conditions is given
by the equation co = V14(po/po) Consequently Equation a may be

written
[2)
z_ b
(L0 2) ®
Similarly, the power coefficient E/pnn’D” and the efficiency 7 are given by
equations of the type,
E Q
eyl (nD‘ ! E) @
23
= d.
n=h (nD’ nD) @

Here E 1s to be regarded as the shaft power (ft Ib/sec) mnus the bearng
losses

Inview of the gaslaw po = poR8, the speed of sound 13 determined by the
temperature alone Consequently Equation b shows that, when Q, #,
and 6 are constant, p 1s proportional to py

The problem of choosing a centrifugal compressor te do a speaified job
1s simlar to the problem of choosinga pump  If a certarn class of machines
15 selected, the diameter D 1s the only unknown Regarding D as a de
pendent varable, we obtain, by dimensional analysis,

D——f(n\/g,i ©
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The efficiency 7 is also given by an equation of the form,

The functions f and F may be obtained experimentally.

The dimensionless product 7V Q/ce® is known as specific speed. If
p/po is specified, the specific speed may be chosen to furnish maximum
efficiency. Then the size of the machine is determined by Equation e.
If the speed » that is obtained by these calculations is impracticable, the
proposed class of machines is unsuitable.

For a more complete treatment of the applications of dimensional analy-
sis to problems of turbomachines, the reader is referred to books on
turbomachinery.'%%

PRrROBLEMS

1. A steady wind blows over plowed fields in level country. At a height of 10 ft
above the ground, the wind velocity is 40 ft/sec. The roughness height of the fields is
0.5 ft (p = 0.00238 slug/ft3 and » = 0.000156 {t?/sec). Calculate the friction velocity.
Calculate the shearing stress of the wind on the ground. Calculate the wind velocity at
an altitude of 1 ft. At an altitude of 100 ft. Plot the velocity profile.

2. Solve Problem 1 for the case in which the wind is blowing over a large smooth
frozen lake. What is the thickness of the laminar sublayer?

3. Determine the most general form of a dimensionally homogeneous equation for
the shearing stress = in a unidirectional turbulent velocity field, if it depends on the mass
density p, the kinematic viscosity », and the three derivatives 1y, 1y, and 1y,

4. Liquid flows uniformly in an open channel. Prove that the average friction
velocity is 4/ gRs.

5. Water (v = 1.1 X 1075 ft?/sec) flows through a horizontal pipe 1 ft in diameter.
The roughness height is 0.002 ft. The pressure drop is 3 1b/ft? per foot of length.
Using Figure 12, calculate the average velocity in the pipe. Calculate Reynolds’ num-
ber. Calculate the friction velocity. Calculate the velocity at the center line of the pipe.

6. Water flows through a pipe 6 in. in diameter. The velocity at the center line of
the pipe is 20 ft/sec. The friction on the wall of the pipe is 1.5 Ib/ft2, Calculate the
velocity « at the points y/r = 0.05, 0.10, 0.20, 0.40, 0.60, 0.80. Plot the velocity profile.

7. A centrifugal pump with an impeller 12 in. in diameter delivers 400 gal/min of
fvater when turning 1800 rev/min. A geometrically similar pump with an impeller 24 in.
in diameter turns 1200 rev/min, and it has the same specific speed as the first pump.
What is the rate of discharge of the larger pump, if it is pumping kerosene with specific
gravity 0.82? What is the ratio of the heads P of the two pumps?

8. The maximum rate of discharge Qumax of a centrifugal pump is reached when vio-
lc'nt cavitation occurs. In a class of geometrically similar pumps, Qrnax depends on the
diameter D of the impeller, the speed of rotation », the density p of the liquid, and the

. ¥ G. Wislicenus, Fliid Mechanics of Turbomachinery, Chs. 2, 3, and 4, McGraw-Hill,
New York, 1947.

®W. Spannhake, Centrifugal Pumps, Turbines, and Propellers, Technology Press,
Massachusetts Institute of Technology, Cambridge, Mass., 1934,
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cavitation pressure function p Denve dimensionless coordinates of a single curve that
determines Qs for all combinations of D, n, o and p

9 Ina class of geometricallv similar machines the run away speed # of a hydraulc
turbme depends on the diameter 22 of the runncr, the head P the mass density p of water
the time f after run away starts, and the izl speed mo.  Dersve the most general form
of a dimenstonally homogeneaus equation for the run away specd #

10 From a class of geometneally simlar hydraulic turbines a designer wishes to select
a turbine that will deliver specified power E at & specified speed n with a speafied value
of thehead P What 1s the general form of the equation that determines the diameter D of
the runner? What 1s the general form of the equation that determines the quantity ¢
of water that flows through the turbine per second” VWhat 1s the general form of the equa
tion for the efficency? What dumensionless product may be identified as specific speed
m this case?

11 Two geometncally ssmilar centrifugal air compressors operate 1 the same room
One compressor 13 twice as large as the other The larger compressor runs at half the
speed of the smaller one  Both machines operate at maximum efficiency  How do the
mass rates of discharge of the two machines compare with each other> How do the dis
charge pressures compare? Hov do the power requirements compare”

12 Denve Equation 24 by the method of Chapter 3

13 Prove that in a class of geometrically smular centrsfugal pumps. the specific speed
at which cavitation occurs 1s a funcuon of the Thoma number

14 Denve the formula for C; for the laminar boundary Sayer

15 For the calculation of skin fnction drag the submerged part of the hull of a ship
19 represented by a thin rectangutar fiat plate 30 ft high and 500 fc long  If the speed of
the plate 18 30 ft/sec and the entical Reynolds number 15 300000 how far aft of the lead
1ng edge of the plate does the boundary layer get turbulent? W hat 15 the total drag force
on the plate> How much horseponer docs the ship expend 1n overcoming skin friction?
(r =141 X 107F {t¥/sec p = 20 slug/ft*)

16 Using Erzen's chart deterrune the maximum rate of run off from a watershed 1000
sq i area f the precipitation 1s 61n of ran  How many days after the rainfall does
the maximum run off occur?

17 List the vanables that determine the speed of rotation . at which the propeller of
a boat will cawitate  Make a dimensional analysis of the problem Denve the model
law

18 A strut of gven shape 1s towed through water Prove by dimensional analysis
that the veloaity at which cavitation begins does not depend on the size of the cross
section of the strut

19 Water from a stand pipe fiows under a sluice gate 1nto a honzontal flume that 15
connected to the bottom of the stand pipe  Prove by dimensional analys s that the depth
of water at the vena contracta does not vary as the head in the stand pipe reduces

20 1f a localized disturbance maves at constant speed 1n a struight line on the surface
of deep water, the gravity waves that are created by the disturbance are confined to @
wedge shaped region with the point of disturbance at 1ts apex  Prove that the angle of the
wedge does not depend on the speed of the pont of disturbance.



CHAPTER 8

Dimensional Analysis Applied
to the Theory of Heat

52. DiMENSIONS OF THERMAL ENTITIES

In his book, Theory of Heat, Clerk Maxwell aptly remarked that special
units of heat, such as the British thermal unit or the calorie, are needless
encumbrances to the science of heat. Indeed, there is no other branch of
physics that employs a special unit of energy. In electromagnetic theory,
mechanical units of energy (e.g. the erg or the joule) are consistently used.
As Maxwell has pointed out, special units of heat lead to awkward phrase-
ologies in scientific discussions, and they cause irregular outcroppings of
conversion factors in the equations of thermodynamics. Accordingly, for
simplicity, we shall consider heat to be expressed in mechanical units (joules,
foot pounds, etc.). A quantity of heat then has the dimension of work;
ie. {FL] or [ML2T2].

Since the thermometric scale is independent of the definitions of mechani-
cal units, a new fundamental dimension [0] is assigned to temperature.
Specific heat, being the quantity of heat that is required to raise a unit mass
one degree of temperature, then has the dimension [L*T—20~1]. The heat
capacity per unit volume (i.e. the quantity of heat that is required to raise
a unit volume of material one degree of temperature) is Cp, in which C is
the specific heat and p is the mass density.

The extension of a rod of length L, due to a temperature rise Af, is

BLAD.  Consequently, the dimension of the coefficient of thermal expansion
Bis [0-1].
. If an insulated prismatic bar of cross-sectional area 4 and length L has
Its ends maintained at temperatures 6; and 8, the quantity of heat that flows
per unit time through any cross section is 2(4/L)(6, — 6,), in which % is
the coefficient of thermal conductivity. Consequently, the dimension of
the coefficient of thermal conductivity is [FT-'07!] or [MLT-36-1,

If a hot plate is immersed in a fluid, the quantity of heat that is trans-
ferred from the plate to the fluid per unit time is 74 A9, in which A4 is the area

119
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of the plate and Af 1s the dufference of temperature between the plate and
the fluid at a short distance from the plate  The term 4 1s known as the
“coeffiient of heat transfer” Tts dumension 18 evidently (FL1T-1g—Y
or {MT-%0 )

53 EQUATION OF STATE OF A PERFECT GAS
‘The pressure that a gas exeris on the walt of a container 15 caused by
mpacts of the molecules on the wall C , the pressure p of a
gas depends primandy on the mass m of a molecule, the average velocity V'
of the molecules, and the number n of molecules per unit volume, 1€,
p=fm V,n)
The only dimensionally homogeneous equation among these variables 13
p = Emn? {a)
1n which K 15 a dimensionless constant
According to the kinetic theory of gases, the absolute temperature 8 1s
proportional to the mean kinetic energy of a single molecule, 1e,
8= Kmv?

n which Ky 15 a constant  Also, the mass density p 13 evidently equal to
mn  Consequently, Equation a may be wrtten
Kapd
puE ®
1 which K18 a constant
The mass m of a molecule 1 proportwenal to the molecular weight M of
the gas  Consequently, Equation b yields

oRO
r="7 (©

n which R 1s a constant that has the same value for all gases Equatwn ¢
1s known as the “equation of state” far gases

The molecular weight Af 1s defined to be thirty-two times the ratio of the
mass of a molecule of the given gas to the mass of 2 molecule of oxygen
Since M 15 a ratio of masses, 1t1s dimensionless  Accordingly, Equation ¢
shows that the gas constant K has the dimension of specific heat, 1e
[R] = [L7-%67]

1i Equation c 15 applied to a mixture of gases, such as ar, an average

lecular weight mav be gved ' The weight of air 1 28 8

In American texts on th d. , mass density 1s com-

# Max Planck Theory of Heat (Vol V of Introduction to Theoretscal Physics) Ch T,
Macmillan New York 1932
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monly expressed in the unit “Ib/ft3.” Since, in gas dynamics, the dis-
tinction between mass and weight is important, writers on this subject
frequently introduce the factor g in Equation c, to account for a change of
the mass unit from the pound to the slug. However, gravity manifestly
has nothing to do with the equation of state of a gas. The physical content
of the equation of state is clearly exhibited by Equation c. Since dynamics
plays a genuine role in modern applications of thermodynamics, simplicity
and clarity will be enhanced if the units that are used are reconciled with
Newton’s law, F = ma. This implies that the pound should not be used
simultaneously as a unit of force and a unit of mass. When the units are
consistent with the equation, F = sma, the value of R does not depend on
the units of force or mass, since R does not contain the dimensions of force
or mass. The value of R is

R = 8.31 X 10" cm?*/sec? deg C = 49,600 ft*/sec? deg F

Equation c is inaccurate if the condition of liquefaction is approached.
This is explained by the circumstance that the preceding analysis does not
account for intermolecular forces nor for the finite diameters of the molecules.
More accurate equations of state (e.g. van der Waals’ equation) include
terms that account for these variables.

54. STANDARD DIMENSIONLESS PRODUCTS IN THE THEORY OF HEAT

If the set of variables in Article 7 is augmented by temperature 6, the heat
transfer coefficient %, the coefficient of thermal conductivity #, specific
heat C, and the coefficient of thermal expansion 8, the following complete
set of dimensionless products is obtained:

Reynolds’ Number = Y—L—’-) = E
u v
Pressure Coefficient P = F -2, (p = pressure)
pV3L® V2
V2
Froude’s Number F=—
Lg
Mack’ 14
ach’s Number M=—
c
Weber’s Number W = pVEL
g
Grashof’s Number G = P-B-g—fj‘f
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L
Nusselt's Number N= !%
Prandtl’s Number Q= %
k0
o N:
No Name X p—V’L

‘The vanable X 1s not a standard product  Itis d

1n order that the above set of dimensionless products shall be complete
‘The dimenstonless product CpVL/k 15 known as “Peclet’s number ”

‘This product 1s identical to QR

55 Hear Transrer 70 A Frownne FLump IN 4 Pipe

Consider the turbulent flow of a fluid in a smooth pipe of diameter D
The mean velocity is V, and the mean temperature on a given cross section
159 The wall temperature 15 8 + A¢  The mass density of the flind 15
p, tts kinematie coefficient of viscosity 1s v, its thermal conductivity 1s &,
and 1ts specific heat 15 C The heat transmitted through the wall per umit
area and per unit time 1s denoted by kA8

Only differences of temperature affect the flow of heat Consequently,
the heat transfer coefficient & does not depend on the temperautre §

Near the wall of the pipe, there 15 a thin layer of fluid 1n which the flow
1s nearly lamnar (laminar sublayer) Since the heat 15 conveyed through
this layer primarily by conduction, the coefficient of thermal conductivity
k 15 an important varable for determiming the heat transfer coefficient &
The thickness of the laminar sublayer s mnfluenced by the kimematic vis
cosity v, the diameter D and the mean veloaty V' These vanables also
affect the flow outside of the laminar sublayer

The steady flow of heat by conduction 13 not affected by specific heat
However, in convection processes the specific heat 1s sigmificant, since the
amount of heat that 1s conveyed by a particle of fluid depends on its heat
capacity A deeper wnsight mto tiis relationship 1s obtamed by studying
the denvation of the differential equation for heat transfer in a lamunar
velonty field  Since the turbulent flow of a flud w1th nonumiform tem-
perature entails a large amount of heat transfer by convection, the heat
capacity of the fluid enters into analyses of this type of phenomenon  The
relevant variable 15 the heat capacity per unit volume  This 15 represented
by Cp, i which € 15 the heat capacity per umit mass {specific heat)

I ovew of (e prevediy coananls, She ket eranster coufforent 4 5 de
termuned by the vanables ¥, D, », ¥ Cp, and A8 The rank of the di
mensional matrix 1s four Consequently, there are three dimensionless
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products in a complete set. A complete set of dimensionless products con-
sists of the Nusselt number N = %D/k, the Reynolds number R = VD/y,
and the Prandtl number Q = Cpv/k. Since these products do not contain
the temperature difference A9, it is impossible to form a dimensionless prod-
uct that contains A8. Therefore, /2 does not depend on AS.

Buckingham’s theorem now yields

N=f®,Q) or k=5f®Q)

Experiments?® indicate that the function f(R, Q) is approximated by
0.023R%3Q0+,

o~

36, CONDENSATION IN A VERTICAL PIPE

Consider vapor at the saturation temperature 6 passing through a smooth
vertical pipe whose wall temperature is § — Af. The condensate forms a
film on the wall that is an insulating layer. Consequently, the rate of con-
densation is influenced by the coefficient of thermal conductivity % of the
condensate. The rate of condensation is determined directly by the average
heat-transfer coefficient %, since the heat that is extracted from the vapor
per unit time is 14 A6, in which A is the area of the wall of the pipe.

The main geometrical variable in the problem is the thickness of the film
of condensate. This depends on the rate of condensation and the nature of
the flow of condensate. The rate of condensation depends on the latent
heat of vaporization of the fluid. Since the volume, rather than the mass,
of condensate is significant, the latent heat should be expressed as “heat of
vaporization per unit volume.” This is represented by p\, in which X is
the latent heat of vaporization per unit mass and p is the mass density of
the condensate.

The facility with which the film of condensate flows from the wall is
determined mainly by its viscosity p and its specific weight pg. Also, since
the thickness of the film is not constant along the pipe, the length L of the
Pipe affects the coefficient of heat transfer. The diameter of the pipe does
not affect the thickness of the film (and consequently does not affect )
if it is large compared to the thickness of the film. The velocity of the
vapor in the pipe influences the thickness of the film to some extent, but
this effect is small if the velocity is not large. If the interaction between
the flow of vapor and the flow of condensate is neglected, the density of the
vapor is irrelevant.

In view of the preceding discussion, there is a relationship of the form,
f(i, A8, L, p\, k, pg, ) = 0 (a)

c 2. H McAdams, Review and Summary of Developments in Heat Transfer by
onduction and Convection, Trans. Am. Inst. Chem. Engrs., Vol. 36, no. 1, 1940,
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The dimensional matnx 13

123 4 § 6 17
h AL Nk ez &
M 100 1 1 1 1
L 001 ~1 1 -2 -1
T|-300 =2 =3 =2 -1
ej-110 0 -1 0 0

The rank of the matrix 1s four Consequently, there are three dimension-
less products 1n a complete set The equations corresponding to the di-
mensional matnx are
hthtbtht+hbh=0
h—bt+h—2k—k=0
=3k — 2k — 3k~ 2k — k=0
~htk—k=0
The matnx of solutions 15

EBw

- @
omolr

123
13 L o ko
n[1060

™[0 10 —4 2
mjoo1 -1 0 1

Accordingly, a complete set of dimenstonless products 15

B s _gL
MR TN (aaEY

By Buckingham's theorem, Equation a must now reduce to the form,
Jmymym) =0 or m = f(m, m)

LA ®
g AV UREY

Hence,

By virtue of this equation, the phenomenon may be completely described
by a chart m which the ordmate 1s A\/kg, the abscissa 15 kuga8/ (o™},
and the parameter of the curvesis gL/A  In the experimental construction
of the chart, 7, may be varied by varywmg the temperature difference A8,
and xs may be varied by varying the length L Note the great simplifica-
tion that results by reducing the number of mndependent variables from sx
to two
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W. Nusselt?® analyzed the phenomenon, using the assumption that the
flow of the film of condensate is laminar. He arrived at the formula:
gpAE?
b= 0943 {[>—
LuAg
In terms of the dimensionless products that have been found, this equation

may be expressed 0,943

m = ——
v T3

This is a special form of Equation b.

In some cases, condensate is observed to form in drops rather than in a
film. To take this phenomenon into account, it is necessary to introduce
the surface tension in the analysis. Also, the roughness and the cleanness
of the wall affect drop-type condensation.

57. TraNSIENT HEAT TRANSMISSION TO A Bopvy iN A FLump

Suppose that a solid conducting body, with initial temperature 6o, is
immersed in a large bath of fluid at temperature §; and that the fluid is
stirred, so that its temperature remains practically uniform and constant.
Then the temperature 6 at any specified point in the body varies with time,
and it approaches the temperature 6, asymptotically.

Only differences of temperature are significant in heat-transfer processes.
In the present case, the differences § — 6 and 6, — 6, determine the remain-
ing difference §; — 6. The response of the temperature to an influx of heat
depends on the heat capacity of the body per unit volume, Cp.

In general, there is a discontinuity of temperature A at a boundary be-
tween two different substances. The time rate of heat flow through a unit
area of the boundary is %A, in which the heat-transfer coefficient % is a
Constant for the boundary.

In view of these remarks, the temperature 6 at a specified point in the
body at the time  is determined by an equation of the form,

6 — 60 = f(%, &, Cp, L, t, 05— o)

in which % is the coefficient of thermal conductivity of the body and L is
a length that designates the size of the body. Dimensional analysis of this

equation yields

0 — 6, _ f( kit _’ié)

6, — 8, °\CoL* % (a)
This equation was derived by Gurney and Lurie? in 1923.

fjW. Nusselt, Z. Ver. deut. Ing., Vol. 60, pp. 541 and 569, 1916.
*Ind. Eng. Chem., Vol. 15, p. 1173, 1923,
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Equation a has a property that enables us to deduce the precise manner
n which the time vanable enters the equation  TFor, irrespective of the
value of 8y, the vanable £ represents the time interval in which the tempera
ture changes from 3 to &  Consequently, Equation 2 may be wnitten

/( kar hL)
0, -0 Cel? &
wherein Af 15 the time interval in which the temperature changes from b to
84 A9 Letting At be an infinitesimal, and expanding Equation b by means
of MacLaunin’s series, we get

RL kAl KL
e =1(o ) ar! 1( )+
Since Af = 01f Af = 0 the first term in this senes 1s zero It follows that
dd_ Akdt
8, —8 Col?

(b)

n which 4 15 a function of AL/% Intcgratmn of this equation yields

In{@—6)=— ﬁ + constant
The constant must be chosen to render the equation dimenstonally homo
geneous and to satisfy the mtial condition & = 6o for { = 0 These conds
tions yield
Ak 0, — 6

[ E i

()

This equation determines the tume ¢ 1 which the temperature changes from
ft0 @ Inversion of Equttion ¢ yields

8 —6

= 1 — g—ArCL?
s 4 ()

‘Thus, Equation a has been reducEd to a more specia form Equation d
13 an wvaluable aid for such as heat

of metals and chemical changes that occur during transient heating processes

58 NartoraL CoNvecTION

Constder a horizontal pipe with diameter d that 1s concentnic with a larger
pipe with diameter D The two pipes are maintained at the respective
temperatures 6 and 6,  The annular space between the pipes 1s filled with
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a liquid. Steady convection currents are generated by the thermal ex-
pansion of the liquid, but there is no axial flow. The rate of heat transfer
from one pipe to the other may be expressed in the form, 24 (6, — 6), in
which 4 is the lateral area of the smaller pipe.

The motion of any particle of the fluid is governed by Newton’s law,
¢ = F/m. The force F is partly viscous friction and partly weight. The
viscous friction is proportional to the coefficient of viscosity g, and the mass
m is proportional to the mass density p. Consequently, the ratio F/m con-
tains the ratio » = u/p. Also, the ratio F/m contains the ratio g = w/p.
Accordingly, the kinematic viscosity » and the acceleration of gravity
g are the significant dynamical variables in the problem. However,
the kinematic viscosity » varies appreciably with temperature. If the
temperature difference 6, — 6, is not too great, the kinematic viscosity
v may be approximated in the range 6, to 6; by the linear equation,
v = vo+ 1 (0 — 6q), in which v and »; are characteristic constants of the
fluid.

The pertinent thermal variables are the temperature difference 6o — 6,
(hereafter denoted by A6), the heat capacity per unit volume Cp, the coeffi-
cient of thermal conductivity k, and the coefficient of thermal expansion
8. It follows that

h=f(d, D, Ad,Cp, &, B, vo, », §)

There are ten variables in this equation, and the rank of the dimensional
matrix is four. Consequently, there are six dimensionless products in a
complete set. The following complete set of dimensionless products may
be found by inspection:

hd  BABgd® Cpvy d vo
=, B2 )

k vo? ’ k ’ D yAf

y BAG

The first three of these products are Nusselt’s number, Grashof’s number
and Prandtl’s number.

Since the convection currents result from the joint action of gravity and
fhermal.expansion, the product A6 presumably has no effect. This con-
Jecture is confirmed by experiment. Accordingly, the following equation

is obtained:
hd d Vo
—=f(G,0,=
k ( ' Q D’leo)

in which the notations G and Q are used for Grashof’s number and Prandtl’s

number. Thus, the number of independent variables in the problem is re-
duced from nine to four.
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ProBLENS

1 Prove that (R, P, ¥, M, W, G, N, Q, K) 13 2 complete sct of dimensiontess products
2 Make a dimensionat analysis of the equation,

0 =fiC ko ¥, L)
3 Make a dimensional analysis of the equation,
h=1@ 0,22 C kLY

4 Camot showed that the efficency g of an deal engine depends only on the abso-
Tnte temperatore 8 of the heat source and the absolute temperature 8 of the heat recewver
What 15 the general form of the relationsbip> Guven that the relatsonshup is linear, snd
that y = 1for 6y = 0 and 7 = 0 for 8, = 0y, derve the precise formula for the efficiency of
an 1deal engime

S Show that, if the diameter d of a polecule affects the equation of state of a gas,
then the gas constant R 1s a function of pd%/m, 1n which m 15 the mass of a molecule and
515 the mass density of the gas

6 Make a dimensional analysis of the equation

E = f(Cp, by, v, B)

fn which E denates energy and 1 denotes specific weight

7 Let the diameter D of & tube be the length for a class of
simlar water tube bolers  Assume that the average heat transfer coeficient & that de-
fines the heat transfer from the gases to the tubes 13 a funcuonof ¥, D », & p,and C,1n
which ¥ 1 the velocity of gases in the flue  Perform a dimenstonal analysss of the problem.

8 A glindnical body of length L and diameter D 18 wmmersed 10 & stationary fad
The difference between the temperatute of the body and the temperature of the fud st &
short distance from the bedy has a constant value A7 Heat 18 transferred from the body
10 the fluid by direct conduction, and by convection currents that are set up by the thermal
expansion of the fnd List the vanables that determine the average heat transfer
cocfficient & Make a dimensional analyuis of the problem

9 A chilled metat ball 1s dropped into a large tank of warm hquid  The bqud 18
stured, so that 1s temperature remains practically uniform and constant. List the
variables that determine the thermal stramn « that exssts at the center of the ball, £ seconds
after the ball 1s dropped 1nto the hiquid  Make & dimenstonal analysis of the problem

10 A body at 10°C 15 dropped into a large bath of hquid which 1s mamntaned at &
umform temperature of {00°C  In 5 mun, the temperature at a point in the body nises
1040°C  In how many more minutes will the temperature nse from 40°C 10 98°C?




CHAPTER 9

Dimensional Treatment of Problems

of Electromagnetic Theory

59. INTRODUCTION

In this chapter, it must be presupposed that the reader is familiar with
the elements of electromagnetic theory.

Several different systems of units have evolved in electromagnetic theory,
and the dimensions of electrical and magnetic entities depend on which
system is used. The rationalized Giorgi system® is now accepted by
electrical engineers, and it is gaining favor among physicists. Only this
system is considered in the following.?

Maxwell’s electromagnetic theory is the foundation of much of the theory
that is used in electrical engineering. In the words of Heinrich Hertz,
“Maxwell’s theory is best defined as Maxwell’s equations.” 1In the ration-
alized Giorgi system, these equations are expressed as follows:

0B

curl E4+ — =0 (29)
ot
oD

curl H — i J (30)

The vector functions E, H, J, D, B are known as “electric field intensity,”
“magnetic field intensity,” “electric current density,” “electric displace-
ment” (or electric induction), and “magnetic induction,” respectively.
The mathematical consequences of Maxwell’s equations may be deduced
without inquiring into the physical meanings of the vector fields E, H , J,
D, and B. However, the importance of Maxwell’s theory in engineering
and in physics naturally rests on the circumstance that these vectors have

# An explanation of the Giorgi system has been given by J. Stratton, Electromagnetic
Theory, Article 1.8, McGraw-Hill, New York, 1941,

* For a discussion of dimensions in the Gaussian system of measurement, see Max
Planck, Theory of Electricity and Magnetism (Vol. TII of Introduction to Theoretical Physics),
Macmillan, New York, 1932.

129
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been 1dentified with measurable quantities  The manner 1n which the cor-
relation 1s achieved 15 described 1n elementary expositions of electnicity and
magnetism

In most 1sotropic, nonmagnetic materials, the five vectors E, #, J, D,
B are linearly related, as follows

D=:E, B=ypl, J=xE @3n

The scalars ¢, p, and « are characteristic constants of the maternal, re-
spectively, called “electric inductive capacity,” “magnetic mnductive ca-
paaty,” and “specific electric conductivity

The vector J 1s concewved to represent flow of electnaity  More pre-
asely, the quantity of electnaty that flows through an elemental area 44
tn an mfintesimal time nterval 4¢ 13 J . dA dt, 1 whuch J 15 the component
of J on the normal to the element d4. Since electricity 1s conserved, this
interpretation leads directly to the equation,

4 _

2, 2
7 . dd (32)

i which J, 18 the component of J on the outward directed normal to any
closed surface A, and ¢ is the total electnic charge within the region that is
enclosed by the surface A

If charged conductors 1n an electrostatical field are given shight displace-
ments, the principle of conservation of energy requures that the work that
15 supplied to move the conductors shall equal the increase of electric energy
wn the field Deductions based on this principle lead to Coulomb’s law,

[
F= 3

dwert @3
Here, F denotes the force that acts between two concentrated charges, ¢
and g, that are separated by a distance r

60 Tue Unrr or ELECTRIC CIIARGE

In order to link the foregoing equations with experimental facts, we must
choose a unit for one electrical quantity  The quantity that 1s selected for
this purpose 1s arbitrary  Analogously, in mechamcs, two systems of di
mensions—the force system and the mass system—have evolved, because
umts may be arbitrarily assigned to either force or mass The current
trend 1n electrical engineering 1s to regard electric charge as a fundamental
quantity  Accordingly, a new dimensional symbol [Q] 15 employed for
€lectric charge  An equation wifl be sa1d to be dimensionally homogeneous
1f and only 1f, 1t remains unchanged when the units of mass, length, tume,
temperature and electric charge are changed 1n any way
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The standard unit of electric charge is the coulomb. The coulomb may be
defined by the condition that two unit charges in a vacuum, when separated
by a distance of one meter, exert a force of 9 X 10° newtons upon each other.
(The definition of a newton is given in Article 2.) The coulomb is evidently
an enormous quantity of electricity. Nevertheless, the ampere, a practical
unit of current, is defined to be aflow of electricity of magnitude one coulomb
per second.

In the Gaussian system of measurement, the unit of charge is defined by
the condition that two unit charges in a vacuum, when separated by a dis-
tance of one centimeter, exert a force of one dyne upon each other, Accord-
ingly, in the Gaussian system, Coulomb’s law (Equation 33) becomes

This equation shows that the dimension of electric charge, in the Gaussian
system, is [F™L] or [M*L¥T-1). The reasoning that has led to this
conclusion is analogous to the reasoning that shows that the dimension of
mass in the astronomical system is [L37—?] (see Example 3).

01. NUMERICAL VALUES OF € AND Mg

If the field vectors E and H are functions of a single space coordinate x,
and if the material does not conduct electricity (i.e., ¥ = 0), Equations 29,
30 and 31 lead directly to the wave equation for the field components;
namely:

’E, 1 0E,

= — —— etc.
a2 e 0a°

Consequently, the speed of a plane electromagnetic wave in a nonconductor
is 1/Veu. This is the speed of light in the medium. It follows that

1/Vepo = 3 X 10° m/sec (3¢)

in which €, and uo are the values of € and p for empty space.
It is apparent from Equation 33 that the dimension of e is
[ = [ML-3T207
Hence, by Equation 34,
[u] = [MLO™

Adopting the coulomb as the unit of charge, we obtain, from Equation 33,

e = (36r X 10°)-1 [5_96_2}31_]
kg m®
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It follows, from Equation 34,

pa = 47 X 107 [!‘ﬂ]
coul?.

Thus, the inductive capacities of empty space are determined

62 Druensions oF ELECTRICAL Entrries

The dimensions of e and j have been derived 1n the preceding artcle

By Lquation 32, the dimension of electric current density 1s

V=1 T
The 1ntegral of the current density J over the cross section of a wire s the
total current that is flowing in the wire  Consequently, the dimension of
electric current I 1s
0= [T

Equation 30 now shows that the dimension of electrical displacement D
18
Dh={L *Q)
Then, m view of Equation 31 the dimension of electric field ntensity E 1s
[£] = [MLT %@ ] = [FQ~]

In view of Equation 29, any stationary electnic field 15 denivable from a

tential function, 1€
po g E=—gndo
The scalar function ¢ 1s called electric potental” Ewidently, the di
mension of ¢ 13

[¢} = (MLT-30~

The hine integral of the vector E 1s called electromotive force " This has
the same dimension as ¢

The capacitance C of a capacitor 1s the rate of increase of charge with
respect to potential 1e, C=dg/d¢ Consequently, the dimension of
electne capacitance i3 €)= L T

Since the dimensions of electromotu e force and electric current have been
d, the of electrical Rasd d by Obm's

Iaw  Accordingly, [Rl = peLar-10-1)

The work that a stationary electric field petforms on a concentrated
charge ¢ as 1t moves from pont 1 to pont Z1s

2
q_[E ds = glds = ¢a)
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in which ¢; and ¢ are the potentials at the respective points. Consequently,
if the potential drop in a linear conductor is ¢, the work that the electrical
forces perform per unit time is ¢I, in which I is the current in the con-
ductor. Accordingly, ¢! is the electric power that is dissipated into heat.
Note that this product has the dimension of power.

63. DIMENSIONS OF MAGNETIC ENTITIES

In a stationary field, the line integral of the magnetic field intensity
around any closed curve equals the electric current that flows through the
loop. This follows from Equation 30, with the aid of Stokes’s theorem.

In symbols,
f H-ds=1

in which the left-hand term represents the line integral of the magnetic
field intensity H about a given closed curve, and I represents the current
that links with the curve. Accordingly, the dimension of magnetic field
intensity is

[H] = [L7TQ)

It has been shown in Article 61 that the dimension of the constant p is
[u} = [MLQ™]

Consequently, the dimension of magnetic induction, B = uH, is
(Bl = [MT7Q~]

The surface integral of the normal component of the vector B over any

surface that caps a closed curve (circuit) is called the “flux of magnetic
induction through the surface” or the “flux of magnetic induction that
links with the circuit.” Consequently, the dimension of flux of magnetic
induction is [MLT-1Q-1]. In view of Equation 29, the time rate of change
of flux of magnetic induction is the induced electromotive force in the
circuit. It may be directly verified that this relationship is consistent with
the dimensions of magnetic induction and electromotive force.
_ A current I flowing in a circuit causes a proportionate flux of magnetic
induction that links with the circuit. If the current is changed, the flux
of induction through the circuit is changed, and, in view of the preceding
remarks, an electromotive force is induced in the circuit. Since the rate
of change of flux of induction is proportional to the rate of change of current,
the induced electromotive force is £ dI /dt, in which £ is a constant. The
factor £ is called the “coefficient of self-inductance” of the circuit. Evi-
dently, the dimension of £ is [ML}Q7.

A current J flowing in a circuit causes a flux of magnetic induction
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through an adjacent arcut  Consequently, 1f the current 15 changed, an
electromotive force 15 induced 1n the adjacent circutt  The induced electro-
motive force may be expressed in the form 9N dI/di  The factor O 15
called the * coefficient of mutual inductance” of the crreuits  The coeffi
cient of mutual inductance has the same dimension as the coefficient of
self inductance

EXAMPLE 16  COEFFICIENT OF INDUCTANCE
In a class of geometncally similar circuits, a crcuit 1s specified by a
single length L The of self inds 15 then d by
the length L and by the magnetic inductive capacity p of the medmm m
which the circust hes  Hence,

& Luy=0
The dimensional matnx 1s
2L
M 10 1
L 21 1
T 00 o
el-20 —2

The rank of this matnx 15 two  Consequently, there 1s only one dimen
sionless product 1n a complete set By wnspection the product 1s found to
be £/ul  C ly, the only d tly b relation
ship among the vanables 1s

£ = Aol
n which A 15 2 dimensonless factor that depends on the shape of the circuit
Accordingly, the self inductance of a circuit 1 proportional to the size of
the arrcutt
64 Sraxparp ELECTRICAL UntIS

1In the practical system of electrical measurement, the MKS mass system
(Artticle 2) 1s employed The umt of force 15 then the newton The
standard umt of electnic charge 1s the coulomb Then n view of the di
mensions that have been denived, the practical umt of electnc field intensity

1 newton]A ‘[ kg m
coulomb |~ Lsect coul,

The umt of electric potential 1s then

t kg m?®
,[m] - .[&] © 1 volt
coul sec? coul,
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The unit of electric capacitance is

2 2
TE I
volt kg m?
Since the farad is an enormously large unit, capacitances are commonly

expressed in microfarads (i.e. millionths of a farad).
The practical unit of electric current is

coul’]
1 [—— = 1 ampere
sec |

The unit of electrical resistance is then

- - .
R AL [}2}_] _ 1 ohm
| ampere | sec coul?

The unit of electric power is

Mk 2 joul
1 ampere volt = 1 gm]=1[w]=1[m]=lm
| sec® sec sec

The unit of magnetic field intensity H is
™ coul
1
_m sec
and the unit of magnetic inductive capacity u is

1 kg m]

|_coul?

Consequently, the unit of magnetic induction B is

k;
Sl
sec coul

and the unit of flux of magnetic induction is

k 2
1[ £ ]=1weber

sec coul

) Finally, the unit of the coefficient of self-inductance or mutual inductance

is
kg m?
1 [couls] = 1 henry
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The preceding results indicate that some electrical units are simple com
binations of other units  For example,

1kg = 1 watt sec’/m?
1 watt = { amp volt
1 farad = 1 amp sec/volt
1 ohm = 1 volt/amp
1 weber = 1 volt sec
1 henry = 1 volt sec/amp = 1 weber/amp
1 joule = 1 watt sec

In electrical engmeering the concept of mass 13 rot used extensively
Consequently, it 15 customary to adopt electric potential or some other
electrical quantity as a fundamental dimension, rather than mass  Also,
since 1¢ fields are c rely 1n electrical engt
neening, it 1s convenient, in practice to employ electric current as a funda
mental dimension, rather than electric charge  Since the product of cur
rent and voltage 1s electric power, the dimension of mass 1s then [M] =
{L *7%1%], in which [{] denotes electric current and 9] denotes electric
potential

Table 3 gives dimenstons of clectrical quantities i the MLTQ system and
1n the LTI system

TasLe 3
DIMENSIONS AND UNITS OF ELECTRICAL AND MAGNETIC ENTITIES
ALTQ System LTI%System  Nameof Unit

Mass (an 1AL ke
Flectric Charge ] rn coulomb
Electnic Inductive Capacity « WLl (LTIe | farad/m
Magneue Tnductve Capacity u 12 1 [L'T7 %] obmsec/m
Electnic Carrent Density J iL T 1) ] amp/m?
Electric Current. T n amp
Electric Displacement D Ll (Lrn amp sec/m*
Electric Field Intensity £ L7201 [ volt/m
Electric Potential BrLT-2g- 141 volt
Electric Capacstance BLoTg) (Tre ) farad
Electric Resstance neLer g 1 I ohmn
Magnetic Field Intensity I (L7101 1] amp/m
Magnetic Induction B mMroy [LT49] sweber/mt
Flux of Magnetic Induction MLIT-107) [Te] sweber
Coeffcrent of Inductance £, JN [z IT1 19 henry
Electric Energy LT (rral Joule

Electric Power e (1e] watt
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65. FERROMAGNETISM

In iron and steel, the vectors B and H do not necessarily have the same
direction, nor is the ratio of the magnitudes of these vectors constant. In
fact, the phenomenon of hysteresis shows that B is not uniquely determined
by H, unless the field increases monotonically. The relationship be-
tween B and H in a ferromagnetic material is thus similar to the relation-
ship between stress and strain in an inelastic material. For a monotonically
increasing field, the relationship between the magnitudes of the vectors
B and H may be represented by a graph that is analogous to the stress-
strain curve of a ductile metal. The general form of this curve for a ferro-

B

Hy, By

H

F1c. 14. Magnetization Curve for a Ferromagnetic Material

méfgnetic substance is shown in Figure 14. Letting (Ho, Bo) be a particular
bomnt on the graph (e.g. the knee of the curve), we may plot the relationship
n a dimensionless form by employing the abscissa H/Ho and the ordinate
B/J?o. In applying dimensional analysis to problems involving ferromag-
hetism, we must restrict attention to a class of substances whose dimension-
less (B, H) curves are identical. In this class, a material is characterized
!’)’ thG_ constants Ho and B,. Analogously, in problems concerned with
lnfilastlc Properties of materials, attention is directed to a class of materials
}vlth 4 common dimensionless stress-strain curve. In this class, a material
Is characterized by its elastic constants.

ExampLE 17. THERMISTORS®
t:hthermistor Is an electric conductor whose resistance decreases markedly
4 the temperature rises. A common type of thermistor is a bead or a disk

*
: Emmpl.es 17 and 18 were contributed by Mr. Knute J. Takle of the Naval Electronics
oratory in San Diego, California.
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made by sintering a number of metallic oxides nto a compact mass  Ther-
mustors have recently had a number of applications to electric crcuits re-
quinng vanzble resistors It has been found that the resistance R of a
thermustar 15 related to the absolute temperature ¢ by an equation of the
following type

R=ad" (a)

The terms « and # are charactenstic constants of the thermstor, and e 15
the base of natural loganithms

The potential drop ¢ across a thermustor s determined by Ohm’s law,
¢ = IR However, the resistance R depends on the equilibrium tempera
ture that prevails when the current 1s flowing  Thus, 1n turn, 1s determined
by the rate of heat transfer to the surrounding medsum  The heat that 15
transferred to the surrounding medum per second (watts) 1s denoted by
£46, m which Af 1s the diff between the of the
and the ambient temperature  The heat transfer coefficient / 1s practically
a constant for a given thermistor, if heat 15 transferred pnmanly by conduc
tion and comvection  If the temperature 15 so high that a large amount of
heat 1s raduated from the thermstor, another factor enters the problem

It may now be concluded that the potential drop ¢ across a thermistor
1s determuined by the current 7, the constants o and 8, the ambient tempera
ture @, and the heat transfer cocfficient 5 Since the resistance R, at the
ambient temperature 15 determined by the equation Ry = ae®®, the con
stant a may be replaced by Re

The relationship among the vanables 15 ndicated by the following
equation

¢ = f(1, 60, Ro, 8, b} b)
In the LTI® system of dimensions, the dimensional matrix 15

123 4 5 6
¢ 16 R B k
o
1
0

The rank of this matrnix 153 The method described in Chapter 3 leads to
the following complete set of dimensionless products

nS*L' ™= ,&. lgaﬂ'.
RaBh Bh B8

Buckingham'’s theorem now yields m = f(ms, ms)
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Bollman and Kreer? have employed a different set of dimensionless
products that may be expressed in terms of the preceding set as follows:

’ 1 ’ T2 ’
T = — 2 e = —2 T3 = T3
™3 3

Accordingly, they have obtained the equation,
¢ | B (I BRo 90)
7 _ s 220,20 c
6 Nrg ~\aN 7 B (©)

By an analytical treatment of the problem, Bollman and Kreer®” have
derived the precise form of Equation c, and they have presented the result

1.0
o
e = =020
08 / - 8 | e
™~
& 4 \ Oy
QIQ? 06 / \\\<F =0.13
ol A >\\
° - = 0.09
o 04 8 \
3 \
/
0
1.2 1.6 20 24 28

0 04 08
Log,o 10 _e!‘,' V 'ﬁhﬁ

Fic. 15. Characteristics of Thermistors
By courtesy of the Institute of Radio Engineers (Reference 27).

PY achart (Fig. 15). This chart is valid for any thermistor whose resistance
Is given by Equation a and whose heat-transfer coefficient % is constant.

ExamMpLE 18. PIEZOLECTRIC RECEIVERS*

Certain crystals, known as “piezoelectric crystals” become electrified
when they are strained. Conversely, they experience strains when they

’:J. H. Bollman and J. G. Kreer, Proc. IRE, Vol. 38, no. 1, p. 20, Jan. 1950.
Examples 17 and 18 were contributed by Knute J. Takle of the Naval Electonics

Labomtory in San Diego, California.
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are electrifed In the absence of boundary stresses and thermal strams,
the relationship between straim and electric field mtensity m a prezoelectnc
crystal 1s hnear  Eighteen charactenstic constants of the crystal (piezo-
electnic cons!ants) enter tlus relationship  Ratios of these constants yield

d products These products may be
disregarded 1f a specific type of crystal at a specific temperature 1s considered
Then a single piezoel constant d the piezo-
electric properties of the material  Since the product of the constant d
with the electric field intensity E 1s a stram, the dumension of d 15
L)

For a crystal the relationship between electric field mtensity E and the
electric displacement D mvolves nine charactenstic coefficients, but again
a single representative coefficient fulfills the needs of dimensional analysis
Likewise, the mechanical properties of a crystal are adequately represented
by the mass denstty p and a single elastic constant A () has the dimension
of pressure )

Piezoelectric crystals are used in some recervers or * pick ups” that record
mechanical vibrations  The crystals 1n this type of instrument are usually
cut to rectangutar forms and they are arranged 1n stachs, with metal fort
conductors between adjacent crystals The onentations of the planes of
the cuts wath respect to the crystallographic axes affect the behavior of the
wmstrument The metal foil conductors are connected to wires that lead
toa galvanometer The stacks of crystals are attached to one or more tron
bars that do not vibrate The whole may be
enclosed m a contamer of oil that has a daphragm or sonic window”
through which the external vibrations enter  This type of receiver 1s used
for detecting underwater vibrations caused by submarines and other dis
turbances 1n the ocean

Suppose that a source of sound at a distance L from the recelver emanates
sonic energy with frequency w at the rate U (watts) The response of
the recenver depends on the direction of the source with respect to the
recaver  This may be designated by an angle @ It 15 mportant m
practice to ascertain the directinaty pattern of a recewver 1e, curves
showing how the response of the recenver vanes with the relative direction
of the source  These curves resemble a cluster of floner petals Dimen
swonal analysis alone provides no information concerning directivity pat
terns, since a direction is defined by dimensionless vanables

‘The response of a recerver may be defined by the electremotive force ¢
of the alternating current that 1s generated by the vibrating crystals This
15 given by an equation of the following form

¢ =fll, &, U, 0,52 5,d) (a)
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in which L is the distance from the source of sound to the instrument, « is
the direction of the source with respect to the instrument, U is the power
emitted by the source, w is the frequency, « is a characteristic length of the
instrument, e is a characteristic coefficient of electric inductive capacity,
) is a characteristic elastic constant of the instrument, p is a characteristic
mass density, and d is a characteristic piezoelectric coefficient. Various
densities may enter the problem; for example, the densities of the oil, the
water, and the crystals. However, if all instruments under consideration
are made of the same materials, only a single representative density is
needed. Likewise, if all instruments under consideration have the same
shape, a characteristic length x specifies completely the geometry of an
instrument. Velocities of sound in oil and in water need not be considered,

since they are proportional to V' \/p.
The preceding variables furnish the following complete set of dimen-
sonless products:
x N U?% o ¢d

ot,'z:——

y —

3 ]
ALY A %
Hence, by Buckingham’s theorem,

2 2,2
%:f(a,x’-)\—f— @- wxp) (b)

- ’ b
L ALt X

This equation is valid for instruments of the same shape, the same materials,
and the same orientations of crystal cuts. In this class of instruments, the
quantities ¢, ), ¢, and p are constants. Consequently, Equation b is not
essentially changed if it is written in the following simpler form:

§=f(a,§,%,wx) ©

If spherical sound waves emanate from a source, the flux of sonic energy
through a surface element at a distance L from the source is inversely pro-
Portional to the square of L. This follows directly from the law of con-
§eryati0n of energy. Consequently, if U is increased by a factor 2 and L
IS Increased by a factor k, the flux of sonic energy at the instrument is
unchanged. Since the receiver responds only to the local flux of sonic
tnergy, it follows that the term /L actually does not enter Equation c.
Therefore, the equation reduces to
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Some instruments have linear responses i lumted ranges, te, for certain
ranges of sound intensity, ¢ 1s proportional to U Then Equation d takes
the more special form,

.
& fw e @

It is well known that the output of a receiver may be expressed as a
function of the direction a, the frequency w, and the ratio U/L* The
result of the d I analys:s 1s that 1t shows how
the size vanable x enters the problem Hence, test data from 2 plezo
electric recewver may be plotted in a form that 15 valid for surular instruments
of different sizes  However, the instruments must not be too small with
respect ta the wave length, since there are scale effects that have been dis-
regarded 1n the preceding analysis
Tf the operation of a piezoelectric receiver 1s reversed, the instrument
becomes a A lectric transmutter 1s ly operated
at the mechanical resonance frequency of the crystals Since the amph
tude of a resonating mechanical system 15 strongly affected by damping,
a friction coefficient must be included in the list of vanables in the dumen
sional enalysis of a prezoelectnie transmitter

PROBLEMS

1 Prove by dimensional analysis that the heat ¥ that 1s emutted per second from an
electric heating cotl 1s proportional to 'R m which 7 1s the current and R 13 the resistance

2 The electnc energy U n 2 capacitor depends on the charge g and the capscitance C
How does U vary with g2 Wath €7

3 The current J 10 & wire depends on the potentiat drop ¢ and the resistance R
What 18 the most general form of a dimensionally homogeneous equation for 2 How
does this compare with Ohum’s taw?

4 Perform a dimensional analysis of the equation

H—ftmyccRD

in which the vartables are respectively magnetic field intensity, mass, magnetic inductive
capacity, electric inductive capacity veloaity of ight, electncal resistance and electnc
current

5 An electric charge that 1s vibrating with a defimte frequency emuts radiant energy
of & definite wave length The energy U that 1s emutted per second depends on the wave
length A, the smplitude of vibration g, the charge ¢ the electnc inductive capacly e of
empty space, and the speed of light ¢ Denve the most general form of a dimensionally
homogeneous equation for U How does U vary with g2 If U 18 proportional to a3,
Bow does U vary vath A?

& The magnetic héld antensity 77 due to a current in a long straight wire depends
only on the current 7 and the distance y from the wize  Show by dimensional analysis
that 13 proportional to I and mversely proportional to y

7 The capacitance C of & plate capacitor depends on the electnic inductive capacity
cof the dielectnic, the distance & between the plates and thearea 4 of a plate ~ Assuming
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that Cis proportional to 4, show by dimensional analysis that C is proportional to e and
inversely proportional to .

8. Express a resistance of 1 ohm in units of the Gaussian system: i.e., grams, centi-
meters, seconds, and CGS electrostatic units of charge (1 coulomb = 3 X 10° CGS elec-
trostatic units of charge).

9, The shaft power W of a d-c motor depends on the magnetic flux density B of the
field, the length L of the armature, the diameter D of the armature, the armature current 7,
and the angular speed » of the shaft. Using the fact that W is proportional to L, derive
the general form of the relationship.

10. If the plates of a capacitor are suddenly connected by a conductor, the current may
oscillate back and forth between the plates. The period ¢ of an oscillation depends on the
resistance R and the self-inductance £ of the conductor and on the capacitance C of the
capacitor. Derive the general form of the equation for £. If the self-inductance is neg-
ligible, how does ¢ vary with C?  With R?

11. Show by dimensional analysis that, if the size of an electromagnet is changed in
the same proportion as the current in the coil, the magnetic field intensity is unchanged
at a point whose relative position with respect to the magnet is fixed.



CHAPTER 10

Differential Equations and Similarity

Dimensional analysis has been developed principally by British and
Amernican scientists  In continental Europe, model laws bave been denved
almost exclustvely from the differential equations that govern phenomena
Differential equations occasionally provide a deeper 1nsight into the laws
of similanty than a mere knowledge of the vanables that enter the problems
—particularly, o laws of sumlanty for distorted models are sought  On the
other hand, the method of different1al equations 1s restricted in tts generality,
since the differential equations that gavern many phenomena (¢ g turbulent
flow) are unknown

66 MopELLaw FOR UNSTEADY MoTI0N OF A BODY IN AN INCOMPRESSIBLE
Viscous Frum

In the first ha!f of the mneteenth century, the question of the effect of
the buoyancy and the resistance of air on the motion of the pendulum
of a clock attracted much interest George G Stokes® derived the
model law for pendulums in viscous fluids by means of the differential
equations that are now known as the Navier Stokes equations

Stokes’ work ts of historical interest, since 1t seems to be the origin of the
expression  dynamuc similanity” wm scientific Lterature  Also, 1t pornts out
lhe sigmfcance of the ratio of viscosity to density which 1s now called

viscosity " , Stokes’ work antedates, by more than
thirty years, the work of Osborne Reynolds 1n calling attention to the fact
that “Reynolds’ number” 1s the ctitenion for deterruining whether or not
flurd motions are dynamucally simitar

Stokes’ analysis determines the general model law for flow of mcom
pressible viscous fluds with fixed boundares For simphaty, plane flow
will be considered Then, 1if the pressure and the body force are elim
nated from the Navier Stokes equations by the application of the differen~

#G G Stokes, On the Effect of the Iaternal Friction of Fluds on the Motion of
Pendutums, Trans Cambridge Phd Soc, Vol IX Part 2, 1856 (Read Dec 9, 1850)
1
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tial operator “curl,” the following well-known equation is obtained:

dw dw dw 9w %

—+ u— —=y|{—+—

ot T ox T dy g <6x2 + ay"’) @)
in which # and v are the velocity components in the x and y directions,
and o is the local angular velocity (vorticity) of the fluid. The same differ-
ential equation applies for a model; i.e.
dw’ do’ , 0w’ , <62w' 8%')

W-l—u'a—x,—i—v ‘67=V

Ix'? ~ 9y"? ()

in which primes refer to the model.
It is desired to determine the necessary and sufficient conditions for the
existence of scale factors K, K, etc., such that

w u v X
W= - u = - V= X = -
K, Ky Ky K,

4 t, !

=l—-, = ~) y=—]i—

KL Kt Kv

If these constants exist, Equation a may be written

_I&?_‘i,._{_ Ky <u,8_w_'+v,a_w' = K. (62w'+?_2£'
K, 0/ ' KvK, ox’ dy’ K, K,\9x'? = 09y

do’ Ky , 0’ , 00’ , Kit (6200’ 9%’

a T KVK,<" o T 5?) B TACZE ay’2> ©
By Equation 12, the ratio K1/(KyK,) is invariably unity. Accordingly,
Eguat}ons b and ¢ show that kinematic and dynamic similarity of flows
with similar boundary conditions are insured by the following condition: ~

K2
KK,
This is the relationship that Stokes derived. It is equally valid for steady
and unsteady flows of liquids with fixed boundaries. Also, since the details
of turbulent flow are probably governed by the Navier-Stokes equations, it

may be expected to remain valid for turbulent flow.
Since Ky = K, /K 1, Equation d may be alternatively expressed,

KKy
K,

:rhls_equation means that the scale factor for Reynolds’ number is unity;
Le, if dynamic similarity exists, the Reynolds numbers of the model and

or

1 (@)

=1 ©)
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the prototype must be equal  This form of the law of siilanty 1s commonly
used 1n cases of steady flow
There 1s another common method for denving laws of similanty from

that 1s the same as the foregoing method
but differs fromat formally The basic 1dea of the alternative method 1s to
express the di n d less forms  In the present

case, this 15 accomplxshtd by introducing a charactenstic length L, a char
actenistic time peniod T, 2 charactenstic veloaty V, a charactenistic angular
veloaty €, and a charactenstic value N of the kinematic viscosity  For
example, 1n the case of penodic flow 1n a closed condut, L mght be the
duameter at a certam section, T might be the period of a cycle, V mught be
the maximum veloaity at a certain section, etc  Dimensionless variables
2,7, etc, may be defined as follows

x=3IL, y=§lL t=1T, w=gl

v=1(V, @ = o, v=7}

In terms of the new variables, Equation a 1s expressed as follows

da  VI{_oda Ow’ NT (0% 3%
G a)" v”(@ﬂ’;’) @
If h pounts and h l times are dered, the dimen

stonless variables 7, §, I, @, t, @, B have the same values for a model and 1ts
prototype  Hence, 1f the systems are similar, the coefficients V7/J and
NT/L* must be the same for the two systems,1¢e,

VI _VT AT _ AT

L~ TTay

i which the primes refer to the model Since V'/V = Ay, etc, these
equations may be expressed

Avh.= K., AK,= AR

The first of these equations 15 automatically satisfied, by virtue of Equa-
tion 12 The second equation 1s :denticat to Equation d, which was de-
nived by the other method

Of the two methods, the first has the advantage that it requires fewer
notations  Differential equations, of caurse, have no wherent advantage
for the treatment of the foregoing problem The same results may be de
rived by the method of Chapters 2 and 3

67 DistorTED MODELS OF RIVERS AND Esruarizs

Questions concerned with the releasing of waters that are impounded by
dams, general problems of flood routing, questions of the effects of levees
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and cut-offs, and many other problems are studied by means of models of
rivers and estuaries. A typical scale factor for the horizontal lengths in a
river model is 1/1000, whereas the scale factor for vertical lengths is usually
not less than 1/100. The most notable feature of a distorted model of a
river is the steepening of the banks, bottom slopes, and other inclinations.
Obviously, the scale factor for any slope is equal to the distortion factor.
Since the bottom slopes are increased and the depths are relatively increased,
the water tends to flow too rapidly in a distorted model. Consequently,
it is necessary to roughen the walls of the model with corrugations or stucco,
in order to retard the flow. Frequently, screen wire is used to simulate
the roughness due to brush, weeds, and trees on the banks.

In all cases of flow with a free surface, equivalence of Froude numbers is a
necessary condition for similarity. The Reynolds numbers are usually of
secondary importance. Accordingly, the scaling of models of open channels
issaid to be governed by “Froude’s law.” However, with a distorted model,
the question arises whether a horizontal length, a vertical length, or some
weighted average of these two lengths should be employed for calculating
Froude’s number. Reynolds conjectured that a vertical length should be
used, since the vertical length scale determines the relative wave speeds.
The equivalence of Froude numbers of a river model and its prototype is
accordingly expressed by the equation, (V')2/L’g = V?*/Lg, in which L’ and
L are vertical lengths of the respective systems. Hence, the scale factor
K. for vertical lengths is related to the scale factor Ky for horizontal veloc-
ities by the equation,

Ky = VK, (a)

Als?, by Equation 12, K,/K, = Ky, in which K. is the scale factor for
horizontal lengths and K, is the time scale factor. It follows that

(b)

For example, let K, = 1/1000 and K. = 1/50. Then, by Equations a
and b, Ky = 0.142 and K, = 0.00707; i.e., the horizontal velocities in the
model are about 14 percent of the corresponding velocities in the proto-
type, and the time periods in the model are about 0.71 percent of the cor-
reSPOIld.ing periods in the prototype. For a model of an estuary with these
Proportions, the period from high tide to high tide is about 5 min. The
tlde~generating machine must be adjusted to give the proper tidal period
for the model. The velocities then automatically assume the correct
values, if the roughnesses of the banks and the bottom are correct. The

adjustment of the roughnesses is a trial procedure that usually consumes a
Jarge amount of time, '
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A ngorous analysis of distorted models of open channels has been pre
sented by A T Doodson ® Doodsen based his argument on the con
tnuity equation and the momentum equation If the velocity V of the
current 1s assumed to be constant at any mnstant on any cross section of the
stream, the continuity equauon Is

B(VA)

=0 {©

mwhich #3152 b d 1n the do durection, 315 the
elevation of the {ree surface at section x (with reference to a horwzontal
datum plane), b1s the width of the free surface at section x, and 4 1s the cross-
sectional area of the stream at section x  This equation merely expresses
the fact that the net rate of flow mto the region between cross sectional
planes with coordinates x and x + dx 1s the rate at which the volume of
water 1n this region 1s increasing

The momentum equation expresses the fact that the net force on the
slab of fluid between cross-sectional planes with coordinates x and x + dx
15 equal to the net rate at which momentum 1s convected out of the region
between these planes plus the time rate of change of momentum The
momentum equation may be expressed

6V+ GV _ 3zim
a Et TR

@

1n which R 15 the hydraulc radius at section x and kpV*1s the average shear
ng stress on the banks and the bottom at section #  Although % depends
on Reynolds’ number, there 1s only a small error i assuming that k 1s
constant

If Equation ¢ and d could be solved, subject to given time dependent
boundary conditions for the sections = 0 and & = xp, the flow at any
time and at any section 1n the interval (0, xo) would be detersuned  How
ever, this 15 a very difficult problem

On the other hand, Doodson has shown that 1t 1s easy to deduce the law
of similanity for models of open channels by means of Equations ¢ and d
To this end, the following substitutions are introduced

L e L Y
5 Tk’ “x °°K

% ¥

v=X ¥

&' K

#A T Doodson Tide Models Dock and Harbour Authorsty, Vol XXIX, no 339,
p 223 Jan 1949 Doodson's analysis 13 reproduced here through the courtesy of the
Dock and Harbour Authority
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in which primes refer to the model. Substitution of these expressions in
Equations ¢ and d yields

K o 1 a4y
K.K., o " KyK. ox

KKy v’ , oV’ Ky* a2’ Krp |,V

e A ’
% o T e 'k W TER.F R )

0 (c")

If the scale factors exist, Equations ¢’ and d’ must reduce, respectively, to
Equations ¢ and d, except for the primes on the terms. Equation ¢’ auto-
matically satisfies this condition, since the relationship K, = K,/Ky follows
from Equation 12. Equation d’ accordingly may be expressed,

3V' , aV’ KV2 (9Z’ KR, B V’2
a TV T TR, w T RE R
This reduces to the form of Equation d if, and only if,
K 2
KVZ =1 (e)
K
and X =1 ()
KK

Equation e is the result that was previously derived by Froude’s law.
Thus, the basing of Froude’s number on a vertical length is justified.
Equation f yields

Kp

K = _K—,,- (g)

For any given shape of cross section, Ky is expressible in terms of K, and K,
by means of geometrical relationships. For a wide shallow channel, Kz is
Practically equal to K,. Accordingly, Equation g shows that K is approx-
mately equal to the distortion factor. Since % cannot be increased in-
definitely, there is consequently a limit to the amount of distortion that a
m0<%e1 may have, if it is to operate satisfactorily. Experience with models
f)f Tvers and estuaries indicates that the friction coefficient £ automatically
Mcreases to some extent as the distortion factor increases. This is possibly
due to the fact that turbulence and eddying are increased by distortion.

68. MopEL Law For ELECTROMAGNETIC PHENOMENA

thA t}'Pinll general boundary value problem of electromagnetic theory is
¢ following: In a system of conductors and dielectrics, the initial values
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of the field vectors Eand H are given, and, on a certamn boundary, the tan
gential components of E are prescribed functions of time It 1s required to
derive the solution of Maxwell’s equations that satisfies the initial conditions
and the boundary conditions

1f the matenals are isotropic and nonmagnetic, Maxwell’s equations may
be expressed as follows

o
culE4pm =0 (2)
cur]H-e%=xE (b

Consider two geometricatly simular systems that have sumlar electro-
magnetic properties, 1e similar distributions of ¢, u, and «  Furthermore,
let the imitial conditions and the boundary conditions for the two systems
be sumilas

If one of the systems (called the model) 15 designated by primes, 1ts be
havior 1s governed by the dufferential equations,

an
curl B+ o = 0 @)
O
v —eE _op
curl ' = ¢ o = «'E )

1n which the notation curl’ indrcates that derivatives are taken with respect
to the accented coordinates If the scale factors, Kz = E'/E, etc, are
introduced, Equations 2 and b may be alternatively written

Ke o K om0

F A ©
K Ka 0B 1
(LT .G E d
K " Kby o Khe' @

In order that Equations ¢ and d shall reduce respectively to Equations a’
and b/, 1t 15 necessary and sufficient that

KeKe _ _KaKe _ Ka __ ©
KEnKy 7 K.XKeKi KKeKy
Equations € yrell
K
=K. VKK, FH = ®
f
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Equation f shows that, when K, is prescribed, the factors K., K,, and
K. may not be assigned independently. Conversely, if the model and the
prototype are made of the same materials (ie., K¢ = Ky = K, = 1), then
K, =1. Accordingly, if it is desired that the model and the prototype
shall have different sizes, the two systems may not be made of the same
materials. The equation K;= K.V KK, signifies that the velocity
scale factor is identical to the scale factor for the speed of electromagnetic

waves, since the speed of an electromagnetic wave is 1/V eu.

69. INTERPRETATION OF DIMENSIONLESS Propucts IN FLutD MECHANICS

In fluid mechanics, the total force on a particle is decomposed into gravity
force F,, viscous friction force Fy, pressure force F,, and inertia force F;.
Each of these forces is represented by a term in the Navier-Stokes equa-
tions. Writing the first of the Navier-Stokes equations for a steady-flow
process and multiplying by a volume element dQ, we get

3 3 9
chosadQ—ﬁdQ-i-quudQ—p(u£+vg-:

The four terms in this equation are, respectively, the x-components of the
gravity force, the pressure force, the viscous friction force, and the inertia
force on the particle dQ; i.e.,

+w-aﬁ>dQ=0
dz

d
¢ = pg cos a dQ, F,,=—a—idQ
Fy = pviu dQ

ou on on
F;= — — — —)d
p(”ax'*'”aﬂ”waz) ¢

In a class of geometrically similar systems with kinematically similar
flows, a velocity field is determined by a single velocity V' that specifies
tshe speed of flow, and a single length L that specifies the size of the system.
et

x = LT, y = Ly, 3= Lz

wu=VvVa, v=Vs w=Vd

Then (z, 3, z) and (4, 9, ) are dimensionless.
" LEt*us also restrict attention to systems with similar pressure distribu-
‘ons.” Then, p = Pp, in which p is dimensionless. Accordingly, the

* Since an arhi
the flow, the con
Simitarity,

trary constant pressure may be impressed on a system without altering
dition of similar pressure distributions is not necessary for kinematic
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equations for Fy, Fy, Fy, and F¢ may be written,

Fy=pgcosadd

wyfom  om o
Fr= (6;'+6_y’ a—z, 4Q

V?
R (SR P
Accordingly, the ratios of these forces are
& 9% _an
Fo_ Lt tis
FT TN v
" oyt e
a5
F, T
Fe 9%, o _od
fgt? g 0%
o  _em , _ou
. 051 %%
Fy €08 a
mn which R= V—LP = Reynolds' number

P
P = — = pressure coefficient
oV

v
F = — = Froude's number
Lg

‘The factors are d;

quently have the same values for all systems
prinaple 1s established

and they conse
Accordingly, the followng

In geomeirically ssmilar systems with kinematically simiar Steady fiows

and sumilar pressure distributions, the ratios of wnertia force o friction
force are sdentical +f the Reynolds numbers are equal, the ratios of mertia
Jorce to pressure force are identical of the pressure cogffictents are equal,
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and the ratios of inertia force lo gravity force are identical if the Froude
numbers are equal.
70. DIFFERENTIAL THEOREM ON DIMENSIONAL HOMOGENEITY

In Article 19, it was demonstrated that an equation y = f(x1, %3, - +, %)
is dimensionally homogeneous if, and only if, the relationship,

K f(a1, 22, - -+, %a) = f(Kar, Koo, + - -, Knn) (@
is an identity in the variables #, %, « - -, #a, 4, B, C, in which
K = AsB*C¢
and K; = A%B¥Cs, i=12,---,n

where A, B, C are any positive numbers, and the dimensional matrix is

Yy %1 X2t %n

Mila ¢ a---a,
Lb b be---bs
T le¢ €1 C***Cn

This theorem establishes a relation between the mathematical use of the
word “homogeneity” and the use of this word in dimensional analysis.
For, if the variables (w1, %2, - - + , #,) all have the same dimension and if the
dimensional exponents of y are proportional to the dimensional exponents
of the 2’s, Equation a reduces to the simpler form,

CNf(xlr X2ty xn) Ef(cxla sz, | Cx")

in which the symbol = signifies that the equality is an identity in the vari-
ables (1, a4, -+, x4, C). Functions with this property were studied by
Euler: They are known as “homogeneous functions” (more specifically,
functions that are homogeneous of degree N). Equation a consequently
shows that dimensionally homogeneous functions are a generalization of
the homogeneous functions of Euler.

I:ZUIeF derived a differential theorem concerning homogeneous functions,
which is readily generalized to include the class of dimensionally homo-
%eneous functions. To derive this theorem, we write Equation a in the
orm,

§=F@ T, -+, Zn) (b)
n WhiCh :17 = Ky; :T;i = Kl'xt') i= 17 27 tey 2
Differentiation of Equation b with respect to 4 yields

0y 9y 9% , 97 0%, 37 0F4
94 "oz 04 Tozmoa T T 5z, A ©
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Let us introduce the above values of §, 1, %, » . 1n Equation ¢, perform
the mdicated dxﬂ‘erenllatxons, and thenset 4 = B=C =1 This yelds
ay = am + nm + -+ anx.ﬂ

Simularly, two other equations are denved by assigning to B and C the role
of A 1n the above denvation  Thus, the following theorem 1s proved

If ajunction y = f{x, 2, , %,) 1s dufferentsable and dimensionally
homogeneous, 1 1s a solution of the dferential equations,
_ % 24
ay = am + amal + + @z k.

by = bm +bm + +b,x.gf- (35)

3,
oy = c.xx + :m 2 + + Catn BJ_

The converse of this theorem may also be proved, 1e
If @ junction satisfies Equation 33, 1t 15 dimensionally homogeneous

However, the proof of this theorem will be omitted, since 1t cannot be
accomplished without recourse ta the general theory of linear first order
partial differentsal equations

In the class of functions that possess first derivatives, Equations 8 and
35 are completely equivalent  Qbserve that these equations are dentically
satisfied, if the variables are dimensionless

Prosrens

1 If a flat elastic plate vibrates freely, the deflection w at the time £ and at the pont
(z, ) of the middle plane 1s determined by the differential :quzunn,
dw o, dw | Bw
= c =0
ot axt oy R ayt +
10 which C1s a constant that depends on the elastic properties of the matenal the density
of the matenat and the thichness of the plate  Prove that a model of the plate that pre-
serves kinematic siilanty can have 0o d stortton of planform  Prove that, when the
planforms of two plates are geometncally sumiar K, does not depend on K« Hence
express Ky as a function of K and K¢ If A, = J§and K, = }{g what 13 the value
of Ka?
2 Prove the theorem on dimensional homogenexty of 4 sum of terms (Article 20) by
means of the theorem n Aeucle 70
3 The equation ¥ = f(z) 18 dimensionally homogeneous By means of the theorem
i Asticle 70 determune the most genesal form of this equation
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4. Derive Theorem 2 of Article 21 from the theorem of Article 70.
5. It has been shown (Article 6) that the drag force on a sphere in a stream of fluid is

given by an equation of the form
VD
F = pV2D¥ | —
v

Show that this equation satisfies Equation 35.

6. Free vibration of a mass m with Jinear damping is governed by the differential
equation m% + ¢z + kx = 0, in which the dots denote time derivatives. Derive the
model law of the phenomenon from this differential equation. Show that the same result
can be obtained by the method of Chapter 5.
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Answers to Problems

CHAPTER 1

. 49.09slug, 716400g, 1579 Ib.
. 95,500 asm, 4.08 X 1023 slug, 6.05 X 10% kg sec?/m, sp gr = 5.50.

114.
. 3.24 X 10718,
1.185 s/? 0.0185 wsh®
W= W = . 18,200 1b.
(s — 1)3(cos @ — sin @)? ! (s — 1)3(cos @ — sin «)? ! ’

C = (1.042 4 0.000129V2) 4.

M = 003174 /(m =P, O01S84p
6t W‘l

(L) =[T], [velocity] = [1], [F]= (MT"1], unit of force = 3 X 10¥ dynes =
67,400 1b,
CHAPTER 2
KplV | . .
L Ap = » in which K is a dimensionless constant.

D2

5/0° . . , .
. ¥er = K '\/—a— s in which K is a function of e.
I3
3¢t L . .
. Yer = K 4[> in which K is a dimensionless constant.
8

b
- M = blte,f (7> ’ M = Kbli?s,, in which K is a dimensionless constant.
14

pol?

. Reynolds’ number, Mach’s number, and angle of attack.
10.

1.

4p = pI"*f(R).

It is proportional to o and inversely proportional to .

h=pf(=, =
' f(D’u)D)

. 1140 ft/sec.

- Speed of sound is proportional to the square root of the modulus of elasticity and

inversely proportional to the square root of the density.

- is inversely proportional to L, proportional to the square root of E, and inversely

proportional to the square root of p.
d pND
f(

= wD3f ”L—IZ- .
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v, /VDg

an=51(50)-
22 128
23 ¥ 15 proportinal to the square toot of T and inverscly proportional to the square
100t of m

o= vs(Fiioi)
L s wversely 1 to V, directly £0 4, and snversely

top
18 proportional to L* and wnverscly proportional to £/

Y
D -4

Y
8 R

8

'Dpa 11 pV'D p,
P D,(K_P VP eViD g

Ha gD @
18 the diameter of the jet ¥ 13 the velocity of the jet ¢ 13 the surface tension of the
hquid, o and o are the mass densities of air and of the hquid, and ua 15 the viscosity
of mr

)u\ which & 1s the height to which the drops rise, D

Cuaprez 3
h=da+2+3), h=-ie+2+6),  k=jb-0), r=q
s=4a+2+6), s=i-b)

QPN AP W, VPN

r=3, ASDMEF BEF, CHDESF

s=3, AVF GRIP BWF GH-Y C, DWG B, EWRUGE
r=1, ANCD, BCOD

=4, AMDUE-tF BGN, BRDME-NSF-wGR, CIDAEMFG
r=2, AE, BE¥™ CEF, DEF:

rm2 AICTD7, BOD

- a{m;/ pe u
™
v=Tg 'l’i,!:,"‘)

e Nt i,

n n\/ﬁ ~ whe “
- — ——1a S,
b= o «/,u» [ aRvZTH »

R
oty R
o "L',(Lg nu’L"‘")
W
o DAl

R N )

s

b I~ =

=

&

8
8

(7, »  Dw=dameter ¢ =surfacetension,  w — speafic weight

ofliqud,  p = mass density of gas,  a = viscosity of gas
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22,

23,

24,

25.

26.
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Specific weight w of raindrop, diameter D of raindrop, surface tension o of raindrop,
mass density p of air, viscosity ¢ of air.

o N (22,2
Dp ’

Velocity ¥V of wind, diameter D of rod, length L of rod, modulus of elasticity E of rod,
mass density pe of air, mass density p, of rod, viscosity us of air.

3 =Df<£:V—D£—a7Ef: E )
D Ha Pr Pa V2
A characteristic length L of the airplane, diameter D of a raindrop, number N of
raindrops per unit volume, mass density p, of water, surface tension o of water, accel-
eration of gravity g, mass density p. of air, viscosity p. of air, speed V of airplane.
72
L po Vipa NL""I ¢ )

-—V L2 — —_—y —
n N f( 1— ” ’ ’gD’p,—V"’D

Velocity V of wind, diameter D of a sand grain, specific weight w of sand, mass den-
sity p of alr, viscosity p of air.

IDp wD
W= vy (=2, =
% PRI

Diameter D of the propeller, rotational speed # of the propeller, the distance L, mass
density p of air, pressure p of air.

U=1’f<7§’”D\/“D'

The mass mt of the drop, the velocity ¥ of the drop, the surface tension o of the liquid,
the mass density p of the liquid, the viscosity u of the liquid, the acceleration of

gravity g.
b= 3’# mpg pV3 pa3
u’ ug gp
CHAPTER 4

- The products are not independent, since the third row in the matrix of exponents is a

linear combination of the other two rows.

3. No.
4. The equations are inconsistent.
5. 23 A product with the dimension [MLT] does not exist.
6. 0.000395,
CHAPTER 5
1. 1/3. Flows are completely similar. 4. 16,000 Ib.
2. 285 1b, 12.2 ft/sec. 5. 15.8.
3. 949 mi/hr, 6. 0.00476 slug/ft2.

ca=g( L,
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& Dustortion factor = 10 K, = K, = 012 Ky =120 Ko, = Ko, = 144 Koy = 184
Ke, = Kr, = 144X 107, Ky, = 144X 10 ¢ Ky = 0127

o 1198 ft/sec 11 12 ft¥/sec 05625 1b/in?

10 25x10" 12 2in /run 312500 1b

13 Ap = Q47 A m 0447 Ko = 100 Kr = Q008 K, =2236 4472 sec

14 Ay = 0600 Kp = 1667 A = D360 D018 667 ft/sec 3in Kvor = 0216,

15 Kepring = 400 Kgamp pg = 0050

16 K 'K = KK

17 Area 1/64 volume 1/512 we ght 1/512 force 1/512 moment of force 1/4096 moment
of Inertia /32768 velocty V/7/4 acceleration 1 angular velocity 24/2 angular
speed of propeller 2V/2 horsepower V2/2048 1 me 4/2/4 1951b 554 bp

CHAPTER 6

16000015 120 m 3 16875 1b
As the square of the d amuter

2-z[ylnsml+;(5——-)1'l—— fory>1

¢
and x = y for 1 wh = 2landy = =
z=yfory < ere ¥ E’ y

N

o~

16
The requred curve is the geaph of this funct on 1 the terval 0 < = < ==
=

836% 8 663%

9 Q% 11592 eycles/sec

K = Ky Kp = K2Ki* KORLK, = Ki

Ki=020 Kp=0020 K, = 6125

They are durectly proportional to Young’s modulus  The membrane energy 1s pro-
portional to the thickness the bend ng energy 13 proportional to the cube of the
thickness and the shear energy s proportional 1o the fifth power of the thickness

=

d by

4 -2
rmar(bE

@

Caaprex 7
" = 250 ft/sec 1o = 00149 Ib/ft* 256 it/sec 544 ft/sec
o =119 ft/sec 7o = 000337 Ib/f* 331 {t/sec 468 ft/sec ¢ =000IS5f1
V=117ft/ec R=1060000 ¢ =0622ft/scc tmay = 139 ft/sec
1342 1495 1647 1799 1888 1951 ft/sec
2133 gal/min 146

[ \/F
Abscissa = nD '\/V » ordinate = D »

B G2

PO NPRIPVIre

3

°
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1.
14.
18.
16.
17.

10,

ANSWERS TO PROBLEMS

1 (P 4| E?p®
1 (D)
P}ﬁ 4| E%p? 4|E%®
Q="—,p;';fz("‘\/—P—5'>’ 17=f3(”'\,_1;5— )
= 4E,

M =4M, p= Ply E =
C; = 1.328R, ™%,

0.141t, 42,080 b, 2295 hp.
50,300 ft3/sec, 2.50 days.

161

The difference p between the static pressure at the shaft level and the vapor pressure,
the diameter D of the propeller, the speed V¥ of the ship, the mass density p of water,

and the acceleration of gravity g.
1 N N 2
,,c=_\/£,(1 \/_e, :
D Np " \V Np gD
1

Kv= VKD, KP=KD, Knc= hy——

VEp

CHAPTER 8

- K =fR, Q).

Ti(m o
] ’pLg’tz’ L’ L2 '

_ 8 _ )
T f(&)’ 7=1 6,

gt cor

Ev‘w’ﬁ‘ pr
'T = f _k— .

-N =f (Rl Q)-
- The diameter D, the length L, the temperature difference A8, the heat capacity per

unit volume Cp, the thermal conductivity % of the fluid, the coefficient of thermal
expansion 8 of the fluid, the kinematic viscosity » of the fluid, and the acceleration of

gravity g,

hD L
2 -1(s.0%):

. The difference between the temperature of the fluid and the initial temperature of the

ball 6, — g,, the thermal conductivity % of the ball, the heat-transfer coefficient / of
the surface, the heat capacity of the ball per unit volume Cp, the diameter D of the

ball, the elapsed time ¢, and the coefficient of thermal expansion 8 of the ball.

kD
€ =f|:z:7D—-2:—;:ﬁ(9! -'Bg)] .

41 0 min
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kS

8 o =

o w o

CuarrER 9
U 18 proportional to g% and mversely proportional to C

I o)
o-240)

1ohm = 1111 X 10'"[

gem?
sec esul.
W = KBInLD w which K 15 a constant

(%)

K, = K Ve, Ke = 081
3= Ks* 1n which  and K are dunensionless
Ka = KEiy B = RaRit

:I ‘esu” denotes the electrostatic unit of charge

CHaPTER 10



Index

Acceleration, 5, 11

Algebraic theory of dimensional analysis, 47
Ampere, 131, 135, 136

Angle, 11

Angular acceleration, 11

Angular velocity, 11

Arched dam, 92

Archery bow, 80

Arrangement of variables, 38

Astronomical system, 8, 9, 25

Beams, 83

Bearing, journal, 42

Bernoulli’s equation, 4, 109

Bécher, M., 29

Bollman, J. H., 139

Boundary layer, 105
Breakwaters, 61, 75

Bridgman, P. W., 29

Buckingham, E., 18, 29, 38, 39, 55
Buckingham’s theorem, 18, 55

Cavitation, 114

Centigrade, 10

Centimeter, 10

CGS system, 2

Chézy-formul4, 110

Cofactors in determinants, 30

Cole, R. H., 71

Complete sets of dimensionless products,
16, 35, 37, 40, 121

Compressors, centrifugal, 115

Condensation, 123

Convection of heat, 126

Conversion factors, 10

Coulomb, 131, 136

Coulomby’s law, 10, 130, 131

Crushing of rivets, 88

Crystals, piezoelectric, 139

Darcy formula, 23, 109
Dcﬂcctions, 79, 82,91
tterminants, 29

Differential equations, 144
Differential theorem on dimensional homo-
geneity, 153
Dimensionless variables, 6
Dimensionless products, 15, 16, 35, 37, 39,
51, 151
Dimensions, 4, 11
of electrical entities, 132, 136
of magnetic entities, 133, 136
of thermal entities, 119
Distortion factor, 67
Doodson, A. T., 148
Drag, 15, 19, 20, 21

Electrical resistance, 132

Electric capacitance, 132

Electric charge, 4, 130, 136

Electric conductivity, 130

Electric current, 132

Electric current density, 129

Electric displacement, 129

Electric field intensity, 129

Electric inductive capacity, 130, 131

Electric potential, 132

Electric power, 133

Electromagnetic theory, 129

Electromotive force, 132
induced, 133, 134

Empirical formulas, 7

Empirical methods in model engineering, 74

Endurance limit, 82

Energy, 4, 11

Equation of state of a gas, 120

Erg, 2

Erosion, 74

Erzen, C., 111

Estuary, 146

Euler’s theorem, 153

Explosions, 70

Fahrenheit, 10
Farad, 135, 136

Tatiorrra ~nf mantosale 18
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Fefferman R L 82

Ferromagaetsm 137

Flow turbulent 99 102 108 109

Flutter of aurplane w ngs 62 63

Foot 10

Force 6 11

Force system §

Frequency 24 95 96

Frction coeffic ent for beanngs 42
for plates 106

Fr et on-d stance parameter 300

Frict on factor fcrpps 22 109

Fricuon veloaty 1

Froude number 17 21 40 65 73 121 147

152

Froude s law 67 147 149
Fundamental system of solutions 34 36 53

Gas constant 120

Gaussian system 131

G ot system 129

Gram 2 10

Grashof s number 121 127

G avitational acceleraton 2 3
Grav tational constant

Head 3
Heat of vaponzation 123
Heat transfer 119 120 122
Tenry 135 136
Holback G 88
Homogene ty d mens onal 13 48
of 2. sum 13 50
of a product 51
Homogeneous functions 153
Homogeneous hinear equa_ons, 33
Homologous durections 68
Homologons po nts, 63
Homologous times 63
Hydraulic radms 109

Impact 94

Inch 10

Independence of d mensionless products 17
E]

X2
Totegral dumens on of 6
Jetues 61 75

Jonts nveted 87
Joule 2 119

INDEX

K logeam 2 10
K net c theory of gases 41 120
Kreer ] G 139

Lamunar sub-layer 100

Langhaar H L 47 82

Laplace s development 30

L near comb nat ons 32 31

L neae dependence 31

Linearly ndependent solutions 34

Mach number 17 74 121
Magnet c field intens ty 129 133
Magnenc induct on 129 133
Magnet ¢ nduct ve capacaity 130 131 136
Mass 6 11
Massdens ty 6 11
Mass system 5 6
Matnx 31
@& mens onal 31 35 37
of solutions 36
Maxwell J Clerk 5 119 129
Mazwell s equations, 129
McAdams W H 123
Meer 10
Mle 10
Mixng length 101
MES system 2
Model lans 66 144
for dectiomagnetic phenomena 149
for umpact 94
for pumaps 115
for structures 81
for forced vib at ons 96
for free vibrat ons 95
Models 16 60
distorted 62 67 146
of mrplanes 61
of hydraul ¢ mach nes 61
of hyd aube structures 61
of r vers and harbors 61 146
of sh p propel er 65
of sh ps, 62
of s ructures 62
Modes of wbration 23 95
Maodulus of elastic ty 31 80 81
Molecu ar we ght 120
Mo ecules 41 120
Moment of a force 11
fne aofanaes 11
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Moment of inertia of a mass, 11
Momentum, 11

Moody, L. F., 22

Mutual inductance, 134

Navier-Stokes equations, 144, 151
Newton, 2, 10
Newton’s law, of gravitation, 8
of inertia, 2, 4
Nikuradse, J., 101, 102
Numerical computations, 76
Nusselt, W., 125
Nusselt’s number, 122, 123

Qhm, 135, 136
Open channels, 109

Pavement, stresses in, 92

Peclet’s number, 122

Piezoelectric constants, 140

Piezoelectric receivers, 139

Planck, Max, 9, 10, 120

Plasticity, 8L

Poise, 10

Poisson’s Ratio, 11, 80

Pound, 3, 4, 10, 121

Poundal, 3

Power, 11

Power coefficient, 115

Prandt), L., 101

Prandtl’s number, 122, 123, 127

Pressure, 6, 11

Pressure coefficient, 17, 19, 23, 33, 40, 115,
152

Pressure drop in a pipe, 22

Products that are not dimensionless, 53

Prototype, 60

Pumps, centrifugal, 113

Rank of 2 matrix, 31

Rayleigh, Lord, 3, 19, 41

Resonance, 96

Reynolds’ numbser, 17, 19, 21,22, 24, 33, 40,
65, 66, 72, 74, 106, 108, 121, 123,
145

Rivet factor, 90

Rivets, 87

Roughness height, 22, 99, 110

Rouse, H., 103

Run-off from a watershed, 111

Sanders, W. B., Jr., 83
Scale effects, 64
in impact, 95
in structures, 82
Scale factors, 66, 67
for acceleration, 69
for force, 70
for length, 66, 67
for time, 68
for velocity, 69
Self-inductance, 133, 136
Shearing stresses in turbulent fluid, 102
Shoaling, 61
Shock wave, 71
Similarity, 62, 63
complete, 64
dynamic, 69, 144
general concept of, 67
geometrical, 20, 62
in mathematical investigations, 75
kinematic, 68
of velocity fields of, compressible fluids,73
incompressible fluids; 71
thermal, 68
Slug, 3, 10
Spannhake, W., 117
Specific electric conductivity, 130
Specific heat, 119
Specific speed, 113, 117
Specific weight, 11
Speed of light, 131
Stanton diagram, 22, 110
Stoke, 10
Stokes, G. G., 144
Sirain, 11, 31
Stratton, J., 129
Stress, 11, 81
Stress concentration factor, 82
Structures, 81, 91
Subgrade modulus, 93
Surface tension, 11, 17, 73, 121
Systems of measurement, American Engi-
neering, 3
Astronomical, 8, 9
British Mass System, 3
CGS, 2
MKS, 2

Takle, K. J., 137, 139
Temperature, 4, 5, 11, 119
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Temperature, ¢flect on viscasity of a gas, 41

Thermal conductivity, coefficient of, 119

Thermal expansion, coefficient of, 119

Therrustoes, 137

Thoma number, 114

Transformation, of dimensionless products,
39

of umts, 7,47
Turbulent flow near a wall, 99
Type of loading, 79

Type of stress strain relationship, 81

Units astronomcal, 8,9
electncal 134
force and mass, 2, 3
thermal, 119

Van den Broek, J A, 87
Van Duest,E R 29

Vanables 1 dimensional problerms, 14
Veloatty, 5, 11

INDEX

Venfication of models, 74
Vibration, of a star, 2¢
of structares 95,96
Viscosity, dynamic coeflicent of, 6, 11, 144
lunematic coefficient of, 6, 11
of a gas 41
Volt, 134, 136
Von Kirmén, T, 102, 107, 108
Vortuaty, 145

Watershed, 111

Watt, 2, 135, 136

Weber, 135, 136

Weber number, 17, 73, 121
Westergaard, H M, 93
Wind loads on mindows, 82
Wishicenus, G, 117

Work, 11, 119

Yielding of materals, 81
Young's modulus, 11, 80, 81



